Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.2.82

Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System  

Kim, Soo-Hyun (Department of Mechatronics Engineering, Kyungnam University)
Kang, Jong-Bong (Department of Nano Science and Engineering, Kyungnam University)
Bae, Sung-Hwan (Department of Nano Science and Engineering, Kyungnam University)
Publication Information
Korean Journal of Materials Research / v.28, no.2, 2018 , pp. 82-88 More about this Journal
Abstract
Stable slurries of YSZ in aqueous suspension with added polymer dispersants, namely, poly-methacrylic acid ammonium salt (PMMA), poly-acrylic acid (PAA) and poly-acrylic-co-maleic acid (PAMA), were mixed with the monomolecular dispersants citric acid and oxalic acid. The dispersion properties of the suspension were investigated using PSA, viscosity, sedimentation, and FT-IR. The polymer dispersants and monomolecular dispersants were attached to the YSZ surface by the carboxylic group, as shown by the FTIR results. A stabilized aqueous suspension was obtained when the polymer dispersant and citric acid were mixed and compared to the use of citric acid alone as a dispersant agent. When the polymer dispersant and citric acid were mixed and milled through attrition milling, there was a smaller particle size compared to when the polymer dispersant alone was used as a dispersant agent. This study determined that the particle size of the mixed dispersant was affected by the properties of the monomolecular dispersant and that the stability of the suspension was affected by the polymer dispersant. However, when slurries of YSZ were mixed with oxalic acid, the particle bridging behavior was the result of the high degree of viscosity and the small sedimentation height.
Keywords
YSZ; suspension; dispersant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. G. Luthardt, M. Holzhuter, O. Sandkuhl, V. Herold, J. D. Schnapp, E. Kuhlisch and M. Walter, J. Dent. Res., 81, 487 (2002).   DOI
2 M. Weller and H. Shubert, J. Am. Ceram. Soc., 69, 573 (1986).   DOI
3 T. J. Ahrens, W. H. Gust and E. B. Royce, J. Appl. Phys., 39, 4610 (1968).   DOI
4 G. D. Mun, J. G. Lee, D. J. Kim, H. Kim, Korean J. Mater. Res., 5, 829 (1995).
5 L. Jiang, Y. Liao, Q. Wan and W. Li, J. Mater. Sci. Mater. Med., 22, 2429 (2011).   DOI
6 G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc., 11, 315 (1993).   DOI
7 T. Fengqiu, H. Xiaoxian, Z. Yufeng and G. Jingkun, Ceram. Int., 26, 93 (2000).
8 Q. Ran, P. Somasundaran, C. Miao, J. Liu, S. Wu and J. Shen, J. Colloid. Interface. Sci., 336, 624 (2009).   DOI
9 Z. Xie, J. Ma, Q. Xu, Y. Huang and Y. B. Cheng, Ceram. Int., 30, 219 (2004).   DOI
10 D. Hanaor, M. Michelazzi, C. Leonelli and C. C. Sorrell, J. Eur. Ceram. Soc., 32, 235 (2012).   DOI
11 H. Kamiya, Y. Fukuda, Y. Suzuki, M. Tsukada, T. Kakui and M. Naito, J. Am. Ceram. Soc., 82, 3407 (1999).
12 M. G. Song, J. Lee, Y. G. Lee and J. Koo, J. Colloid. Interface. Sci., 300, 603 (2006).   DOI
13 Y. K. Leong and B. C. Ong, Chem. Eng. Res. Des., 101, 44 (2015).   DOI
14 Y. K. Leong, Phys. Chem. Chem. Phys., 41, 5608 (2007).
15 W. H. Rhodes, J. Am. Ceram. Soc., 64, 19 (1981).   DOI
16 B. Singh, R. Menchavez, C. Takai, M. Fuji and M. Takahashi, J. Colloid. Interface. Sci., 291, 181 (2005).   DOI
17 M. A. Cohen Stuart, G. J. Fleer, J. Lyklema, W. Norde and J. M. H. M. Scheutjens, Adv. Colloid. Interface. Sci., 34, 477 (1991).   DOI
18 S. Farrokhpay, Adv. Colloid. Interface. Sci., 151, 24(2009).   DOI
19 R. Suntako and N. Traiphol, Adv. Mater. Res., 664, 654 (2013).   DOI
20 J. Copikova, A. Synytsya, M. Cerna, J. Kaasova and M. Novotna, Czech J. Food Sci., 19, 51 (2001).
21 J. Dong, Y. Ozaki and K. Nakashima, Macromolecules, 30, 1111 (1997).
22 S. Zhou, G. Garnweitner, M. Niederberger and M. Antonietti, Langmuir, 23, 9178 (2007).   DOI
23 A. Iqbal, Y. Tianb, X. Wanga, D. Gonga, Y. Guoa, K. Iqbal, Z. Wang, W. Liua and W. Qin, Sensor. Actuator. B. Chem., 237, 408 (2016).   DOI