• Title/Summary/Keyword: Dispatching Decision

Search Result 27, Processing Time 0.02 seconds

Object oriented simulation in a CIM environment

  • 김종수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.67-76
    • /
    • 1991
  • For several years, graduate students and faculty of the Engineering Systems Research Center at U.C., Berkeley have been studying new methods of planning and scheduling in a computer integrated manufacturing environment, with particular emphasis on large scale integrated circuit fabrication. One part of this work, focusing on short interval scheduling, uses simulation models as a primary research tool. We have built two versions of the same basic model (programmed in C) to study two different problems (one deals with machine down time and the other with setup times). These have proven to be efficient for studying particular problems, but are difficult and time consuming to modify. We are convinced that our research will be more effective: (1) if it were easier to build special purpose models tailored to the research question at hand; and (2) if we had better interfaces to graphics output. Commercially available factory simulators are inadequate for this research for a variety of reasons. Existing packages such as SIMKIT, SLAM, SIMAN and EXCELL have their own weaknesses. Typically, they are hard to develop and to modify. They do not allow for adding new dispatching decisions or release decision. Also, it is hard to add more machines to existing environment or change the route the product flows. For these various reasons, we had developed a new simulation package having flexibility and modularity. In this paper, based on experiences gained in the application of object oriented programming, we discuss unique features of the simulator developed in OOPS and ways to take advantage of features in developing and using manufacturing simulation software written in the OOPS

  • PDF

Model Structure and its Solution of Analytical Research on Transit Network Design (대중교통 노선망 설계에 관한 해석적 연구의 모형 구조와 풀이)

  • Park, Jun-Sik;Gwon, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.129-140
    • /
    • 2007
  • The planning procedure of a transit operation consists of design, operation, and evaluation according to the research characteristics. There are some review studies on the operation and evaluation procedure, but the research on the design procedure has not yet been organized systematically. In this study, the research on transit system design was reviewed and the model structure and its solution method were arranged. The decision variables of the design procedure are network structure, line spacing or position, stop spacing, dispatching headway, and fleet size. In the analytical research on design procedure, system total cost is generally used as the objective function. System total cost is comprised of user cost, which is the sum of user access, waiting, and travel cost, and operating cost. Total cost of the transit system, used as the objective function, has the unique minimum because it is differentiable. There is a certain decision variable that makes the derivative of the objective function equal to zero and the second derivative of the objective function is positive. Therefore the decision variable that makes the first derivative of the objective function zero is the optimum that minimizes the objective function, and each of the cost components of the objective function become the same. This study is expected to help understanding about the research on the design procedure of transit operation planning and to help be a catalyst for relevant research.

Fully Distributed Economic Dispatching Methods Based on Alternating Direction Multiplier Method

  • Yang, Linfeng;Zhang, Tingting;Chen, Guo;Zhang, Zhenrong;Luo, Jiangyao;Pan, Shanshan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1778-1790
    • /
    • 2018
  • Based on the requirements and characteristics of multi-zone autonomous decision-making in modern power system, fully distributed computing methods are needed to optimize the economic dispatch (ED) problem coordination of multi-regional power system on the basis of constructing decomposition and interaction mechanism. In this paper, four fully distributed methods based on alternating direction method of multipliers (ADMM) are used for solving the ED problem in distributed manner. By duplicating variables, the 2-block classical ADMM can be directly used to solve ED problem fully distributed. The second method is employing ADMM to solve the dual problem of ED in fully distributed manner. N-block methods based on ADMM including Alternating Direction Method with Gaussian back substitution (ADM_G) and Exchange ADMM (E_ADMM) are employed also. These two methods all can solve ED problem in distributed manner. However, the former one cannot be carried out in parallel. In this paper, four fully distributed methods solve the ED problem in distributed collaborative manner. And we also discussed the difference of four algorithms from the aspects of algorithm convergence, calculation speed and parameter change. Some simulation results are reported to test the performance of these distributed algorithms in serial and parallel.

A study of Cluster Tool Scheduler Algorithm which is Support Various Transfer Patterns and Improved Productivity (반도체 생산 성능 향상 및 다양한 이송패턴을 수행할 수 있는 범용 스케줄러 알고리즘에 관한 연구)

  • Song, Min-Gi;Jung, Chan-Ho;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.99-109
    • /
    • 2010
  • Existing research about automated wafer transport management strategy for semiconductor manufacturing equipment was mainly focused on dispatching rules which is optimized to specific system layout, process environment or transfer patterns. But these methods can cause problem as like requiring additional rules or changing whole transport management strategy when applied to new type of process or system. In addition, a lack of consideration for interconnectedness of the added rules can cause unexpected deadlock. In this study, in order to improve these problems, propose dynamic priority based transfer job decision making algorithm which is applicable with regardless of system lay out and transfer patterns. Also, extra rule handling part proposed to support special transfer requirement which is available without damage to generality for maintaining a consistent scheduling policies and minimize loss of stability due to expansion and lead to improve productivity at the same time. Simulation environment of Twin-slot type semiconductor equipment was built In order to measure performance and examine validity about proposed wafer scheduling algorithm.

The Profitability Analysis of BESS Installation with PV Generation under RPS (RPS 제도 하에서의 태양광발전 연계형 배터리시스템 수익분석 방법에 관한 연구)

  • Kim, Chang-Soo;Yoo, Tae-Hyun;Rhee, Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.107-117
    • /
    • 2017
  • Since South Korea started to apply Renewable Portfolio Standard (RPS) in 2012, there have been huge investment for deploying renewable technologies. Recently, the government determined to incentivize battery energy storage system(BESS) with renewable generations in order to induce the improvement of dispatching capability. In this paper, the annual pattern of PV generation based on actual generation data in South Korea is analyzed and the duration curve of capacity factor is proposed in order to provide the simplified analyzing methodology of present support policy for additional BESS installation for decision maker who is responsible for supply and demand planning. With suggested methodology, the range of appropriate BESS size with respect to the variation of system marginal price(SMP) and renewable energy certificate(REC) price can be derived briefly, and decision makers easily evaluate the effect of support scheme. Current policy for BESS installation support present additional BESS-related installation policy may give incentives to developers partially, however, the dependence between BESS size and benefit components (SMP and REC) can limit the deployment of the various portfolios of the BESS. Therefore, when improving the current policy in future, addressing the dependence between the technical aspects of battery size and the benefit components separately by the technical and economical parts is needed to set the suitable compensation rules for the renewable generation and BESS.

Discussion on Formulation Process and Configuration of Fire-Fighting Vulnerable Zone Model (소방취약지 모델의 구성과 정립프로세스 논의)

  • Kim, Seong Gon;Chang, Eun Mi;Choi, Gap Yong;Kim, Hi Tae
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.71-77
    • /
    • 2014
  • There are numbers of unpredictable risk factors in the disaster scenes such as fire, explosion and fail to early life-saving or holding the flames which can lead to massive damage. In particular, fire-fighters who arrive on the scene within 5 minutes after dispatching, have a limitation to get aware to the situation of scene fully, because of immediate deploy to disaster scene with limited information. This situation may lead to disturbance that fire-fighters perform effective fire-fighting activities, to put fire-fighter's life at risk by misjudge the situation. Previous domestic and International studies focused vulnerability for spatial area or features which can damage to life and property in the event of anticipated. In this study, we have been developed fire-fighting vulnerable zone model that can analyze comprehensively hindrance factors for fire-fighting activities targeting whole life cycle of fire-fighting activities from dispatch to fire suppression or life-saving. In addition, we have been given shape to finality and applicability for our model by defining the new concept of fire-fighting vulnerable zone which can be distinguished from the concept of fire vulnerable area in previous studies. The results of this study can be used to analysis fire-fighting vulnerable zone type analysis, establish fire-fighting policies and improve the performance of decision-making process.

An Empirical Analysis of Influencing Factors toward Public Transportation Demand Considering Land Use Type Seoul Subway Station Area in Seoul (토지이용유형별 서울시 역세권 대중교통 이용수요 영향인자 실증분석)

  • Oh, Young Taek;Kim, Tae Ho;Park, Je Jin;Rho, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.467-472
    • /
    • 2009
  • Even if Seoul City administration improved its public transportation service, transportation model share in seoul has not been increased. Subway user is also decreasing. Therefore, policy transition into TOD(Transit Oriented Development) should be applied in oder to enhance subway modal share. This paper develops a influencing model by using variables of transportation demand and supply. In addition, it provides major influencing factors for users in subway station area and level of transportation supply based on the analysis results. The results show that: first, cluster analysis presents that traffic pattern is proved to be different according to land use characteristics(residence, non-residence); second, main transportation variables such as transferring distance, the number of bus stop, the number of short distant bus lines, and the number of bicycle are more supplied in residential area compared to non-residential areas; third, the number of lines, bus dispatching interval, operating time, and distance between subway stations are more supplied in non-residential areas than residential areas. All in all, the results will be useful for providing priority of considerations in case of decision-making on public transportation policy in subway station area.