• Title/Summary/Keyword: Dismantling Process

Search Result 126, Processing Time 0.056 seconds

Interactive graphic simulation of research nuclear reactor dismantling process (연구용원자로 원격해체공정의 그래픽 전산모사)

  • 박영수;윤지섭;오원진;홍순혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.848-851
    • /
    • 1997
  • A graphic simulation program is developed to assimilate the remote dismantling process of research nuclear reactors. This program makes extensive use of a commercial robot graphic instruction program. Firstly, a realistic graphic model of research reactors are built along with various dismantling equipments. Using the graphic instruction languages provided by IGRIP, then, a graphic process simulation program is developed that operates interactively with the user. Consequently, it is made possible for a process designer to visualize an arbitrary dismantling sequence and interactively modify the process. It is expected that the developed system will be utilized as an effective operator aid in both design and execution phases of remote dismantling of research reactor.

  • PDF

Analysis of dismantling process and disposal cost of waste RVCH

  • Younkyu Kim;Sunkyu Park ;TaeWon Seo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the waste reactor vessel closure head (RVCH) that is replaced owing to design or manufacturing defects is buried in a designated area or temporarily stored in a radiation shielding facility within the NPP. In such cases, storing it for extended periods proves a challenge owing to space constraints in the power plant and a safety risk associated with radiation exposure; therefore, dismantling it quickly and safely is crucial. However, not much research has been done on the dismantling of the RVCH in an operational power plant. This study proposes a dismantling process based on the radioactive contamination level measured for the Kori #1 RVCH, which is currently being discarded and stored, and examines the decontamination and cutting according to this process. In addition, the amount of secondary waste and dismantling cost are evaluated, and the dismantling effect of the reactor closure head is analyzed.

A Model for Optimization Process of Asbestos Dismantling Work Using Simulation (시뮬레이션을 이용한 석면 해체공사의 최적화 공정계획 모델)

  • Cho, Hyeong-Jun;Noh, Jae-Yun;Lee, Ho-Hyeon;Lee, Su-Min;Han, Seung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.17-18
    • /
    • 2022
  • In Korea, asbestos removal has been actively carried out nationwide since 2015 when asbestos was completely banned as a first-class carcinogen. Since scattering dust generated in the process of removing asbestos causes fatal diseases such as asbestos lung disease and lung cancer, concerns are growing over the safety of construction workers and building users undergoing dismantling. For this reason, regulations on asbestos sites have been strengthened and prior studies on safety and risk assessment have been conducted, but research on actual site data collection and process planning is insufficient even though safety is reduced due to delay in site construction period. Therefore, it is necessary to analyze the work and delay factors of the asbestos dismantling process and develop an optimized process plan model for workers. This study is an initial step to develop an optimized process plan model that considers the safety and productivity of asbestos dismantling work, and aims to help establish an optimized process plan for asbestos dismantling process using website clone simulation.

  • PDF

A Study of 3-Dimension Graphic Monitoring System for Spent Fuel Dismantling Process

  • Kim, Sung-Hyun;Song, Tae-Gil;Lee, Jong-Youl;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.1-73
    • /
    • 2001
  • To utilize the uranium resources contained in the spent nuclear fuel generated from the nuclear power plants, the remote handling and dismantling technology is required. The dismantling process of the sport fuel is the most common process involved in the spent fuel recycling, the rod consolidation and the disposal processes. Since the machine used in the dismantling process are located and operated in isolated space, so called a hot cell, the reliability of machines is very important. To enhance the reliability of the process, in this research, the graphical monitoring system is developed for the fuel dismantling process. The graphic model of each machine is composed of many parts and every parts of the graphic model are given their own kinematics. Using the kinematics and simulating the graphic model in the virtual environment, the validity of the conceptual design can be verified before ...

  • PDF

The Actual State of Demolition and Pilot Dismantling in Apartment Building (해체공사의 수행실태 및 공동주택 분별해체 시험시공)

  • Kim, Hyo-Jin;Sohn, Jeong-Rak;Park, Seong-Sik;Yoon, Yung-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.113-118
    • /
    • 2007
  • Now a performance process of Demolition works is 'Before-Removal & After-Classification' method in Korea. This method is short of demolition time, but construction wastes contained substances lower recycling rate of construction, raise expenses of reclamation & treatment. Then the government has decided upon a positive 'Before-Classification & After-Removal' method, and substantially raise a recycling rate of construction wastes. Therefore, this study makes an investigation into state of internal and external demolition field through evaluating technological level, we make a proposal of dismantling method from there. Also, we put dismantling to the test in an apartment by proposed work process. As the result, it made a term of works increased for removing interior material. To solve this problem, we need to develop tools and methods of construction that can remove efficiently. From now on, we continuously need to study a breakdown system of dismantling, analysis of dismantling process and general system by inspecting entire demolition process. And we have to study details for making a specific thesis of method of removing interior material which was based on developing a suitable partial demolition machine and dismantling works.

  • PDF

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

A Study on the Measurement of Total Airborne Bacteria in the Process of Dismantling the Non-structure of Old Building (노후건축물 비구조체 해체과정에서의 총부유세균 발생량측정에 관한 연구)

  • Son, Byeung-Hun;Kang, Kyung-Ha;Lee, Ji-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.313-314
    • /
    • 2021
  • An old building over 30 years old continue to increase. Therefore, there will be more dismantling of old buildings in the future. Safety management of dismantling works is being strengthened. However, no consideration has been given to the effects of dismantling workers and their residents due to environmental hazards arising from the demolition process. Only spray and dust prevention measures are subject to inspection to minimize dust generation considering civil complaints around the site of dismantling work. In this paper, residential buildings, which account for the largest proportion of old buildings, were collected and identify total airborne bacteria and floating fungi among environmental hazards caused by non-structural dismantling work. Measurement results showed that workers during dismantling work are working in places with 4.8 times more total airborne bacteria than indoor air quality maintenance standards. Related research is needed for the health of dismantling workers.

  • PDF

A Short Review on the Mechanical and Thermal Processes for Underwater Cutting of Metal Structures (금속 구조물의 수중 절단을 위한 기계적 열적 공정의 특징 분석)

  • Mun, Do Yeong;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Underwater cutting has a different mechanism than dry cutting, and there are more restrictions than benefits. Due to these constraints, research and development of underwater cutting has been very limited. At present, reactor dismantling is emerging as an important task worldwide, and reactor pressure containers, a key part of the reactor, are decommissioned based on underwater cutting. Reactor pressure containers are high-level radioactive waste, which is one of the main goals of today, such as to bridge the gap between environmental, safety, and cutting performance; hence, a process suitable for cutting should be applied. Therefore, many studies are being conducted on underwater cutting in connection with the dismantling of nuclear reactors in various areas in order to find appropriate processes. This paper first introduces the core technology of underwater cutting processes and discusses various processes. The emphasis is then placed on the adequacy of the reactor dismantling application. More specifically, we examine the suitability for the mechanical and thermal cutting processes, respectively, to find a solution suitable for dismantling a reactor. We discuss how each solution can sufficiently perform the specified functions at each stage of reactor dismantling and suggest that these processes can perform all of the work of underwater cutting.

Development of Process Planning Model for Asbsestos Dismantling Work Based on Performance Risk (석면해체 공사의 작업 위험성 기반 공정 계획 모델 개발)

  • Lee, Su-Min;Noh, Jae-Yun;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.71-72
    • /
    • 2023
  • Asbestos is a durable and heat-resistant building material used in various building materials such as slate, ceiling tex, and spray paint. It has been banned since 2009 after found to be a first-class carcinogen that causes various cancers and asbestos lung disease. Since workers are likely to be exposed to asbestos in the process of dismantling and removal of asbestos-made building materials and facilities, laws and work standards are proposed by the Ministry of Employment and Labor to ensure the safety of asbestos dismantling work. In addition, prior studies on exposure levels and analysis methods have been conducted in this regard mainly for residents. However, the relation between the results of the risk assessment of the process conducted during the asbestos investigation and the work is still ambiguous for the safety of workers. Therefore, this study proposes a process model development methodology that considers work risk based on the results of a survey from asbestos dismantling companies.

  • PDF

A Study on the Analysis of Environmental Hazards when Dismantling Non-Structure of Old Residential Buildings (노후 주거용 건축물 비구조체 해체 시 환경유해인자 분석)

  • Son, Byeung-Hun
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • The number of old buildings older than 30 years in Korea continues to increase from 29.9% in 2005 to 38.8% in 2020. Considering the growing urban regeneration projects, urban maintenance projects, the suppression of urban expansion, and the lack of idle land in the city, the dismantling of old buildings is expected to increase further in the future. As major accidents at building dismantling sites continue to occur, related agencies are also strengthening safety management of building dismantling works. While physical safety management such as collapse and fall is strengthened, there is a relative lack of interest in the health of workers at dismantling sites due to environmental hazards. Since relevant laws stipulate that construction waste should be separated and discharged, old buildings need to be considered for environmental hazards such as fine dust, floating bacteria, and floating molds when dismantling. In this study, we intend to find important safety management elements in the management of building dismantling sites, measure environmental factors harmful to dismantling workers, and present basic data for the management of dismantling sites in the future. "Safety management" was the highest priority, followed by "dust," "vibration," "noise," "bacteria," and "smell." The perception of the importance of "physical damage prevention" with workers working on dismantling and managers managing the site came out similar, but the perception of "work efficiency" and "health disorder prevention" through environmental hazard management showed different priorities. In the process of dismantling, floating bacteria and floating mold were collected, cultured, and measured the concentration in the indoor air. The measurement was measured by dividing it into pre-dismantling and during dismantling.