• Title/Summary/Keyword: Dislocations

Search Result 408, Processing Time 0.026 seconds

Characterization of Basal Plane Dislocations in PVT-Grown SiC by Transmission Electron Microscopy

  • Jeong, Myoungho;Kim, Dong-Yeob;Hong, Soon-Ku;Lee, Jeong Yong;Yeo, Im Gyu;Eun, Tai-Hee;Chun, Myoung-Chuel
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.656-661
    • /
    • 2016
  • 4H- and 6H-SiC grown by physical vapor transport method were investigated by transmission electron microscopy (TEM). From the TEM diffraction patterns observed along the [11-20] zone axis, 4H- and 6H-SiC were identified due to their additional diffraction spots, indicating atomic stacking sequences. However, identification was not possible in the [10-10] zone axis due to the absence of additional diffraction spots. Basal plane dislocations (BPDs) were investigated in the TEM specimen prepared along the [10-10] zone axis using the two-beam technique. BPDs were two Shockley partial dislocations with a stacking fault (SF) between them. Shockley partial BPDs arrayed along the [0001] growth direction were observed in the investigated 4H-SiC. This arrayed configuration of Shockley partial BPDs cannot be recognized from the plan view TEM with the [0001] zone axis. The evaluated distances between the two Shockley partial dislocations for the investigated samples were similar to the equilibrium distance, with values of several hundreds of nanometers or even values as large as over a few micrometers.

A Study on the Deformation Behaviors of $Ni_3Al$ Single Crystals Depending on Crystallographic Orientations (결정학적 방위에 의존하는 $Ni_3Al$ 단결정의 변형거동에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • An investigation of the deformation behavior of ${\gamma}'-Ni_3Al$ single crystals containing fine dispersion of disordered ${\gamma}$ particles was performed for several different crystal orientations. Deformation structures were observed by the weak-beam method of transmission electron microscopy (TEM). The critical resolved shear stress (CRSS) for (111) [$\bar{1}$01] slie. increases with increasing temperature in the temperature range where (111) slip operates. The CRSS for (111) [$\bar{1}$01] slip is dependent on crystal orientation in the corresponding temperature range. The temperature where the strenjlth reaches a maximum is dependent on crystal orientation; the higher the ratio of the Schmid factors of (010) [$\bar{1}$01] to that of (111) [$\bar{1}$01], the higher the peak temperature. The peak temperatures were increased by the precipitation of y particles for the samples of all orientations. Electron microscopy of deformation induced dislocation arrangements under peak temperature has revealed that most of dislocations are straight screw dislocations. The mobility of screw dislocations decreases with increasing temperature. Above the peak temperature, dislocations begin to cross slip from the (111) [$\bar{1}$01] slip system to the (010) [$\bar{1}$01] slip system, thus decreasing the strength.

A Study on the Strength Characteristics of $L1_{2}-Ni_{3}Al$ Intermetallic Compound ($L1_{2}-Ni_{3}Al$ 금속간화합물의 강도특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2009
  • Structural studies have been performed on precipitation hardening found in $Ni_{3}Al$ based ordered alloys using transmission electron microscopy (TEM). Tilt experiments by the weak-beam method were made to obtain some information concerning the cross slip mechanism of the superlattice dislocation. The strength of ${\gamma}'-Ni_3$(Al,Ti) increases over the temperature range of experiment by the precipitation of fine $\gamma$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Over the whole temperature range, the interaction between dislocation and $\gamma$ precipitates is attractive. On the temperature range of 773 K to 973 K, the dislocations in ${\gamma}'$ matrix move on (111) primary slip plane. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in $\gamma$ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in ${\gamma}'-Ni_3$(Al,Ti) containing $\gamma$ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered $\gamma$ particles.

Stress Concentration Effects on the Nucleation of the Structural Defects in Highly Strained Heteroepitaxial Layers (高變形된 異種 에피층에서 응력 집중이 결정결함 생성에 미치는 영향)

  • Kim, Sam-Dong;Lee, Jin-Koo
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.615-621
    • /
    • 2001
  • We carried out the kinetic model calculations in order to estimate the nucleation rates for two kinds of half-loop dislocations in highly strained hetero-epitaxial growths; $60^{\circ}$dislocations and twinning dislocations. The surface defects and the stress concentration effects were considered in this model, and the remaining elastic strain of the epilayers with increasing film thickness was taken into account by using the modified Matthews' relation. The calculations showed that the stress concentration effect at surface imperfections is very important for describing the defect generation in highly mismatched epitaxial growth. This work also showed that the stress concentration effect determined the type of dislocation nucleating dominantly at early growth stages in accordance with our XTEM (cross-section transmission electron microscopy) defect observation.

  • PDF

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온예변형에 의한 크리프 거동)

  • Park, In-Duck;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strianed specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steel which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

  • PDF

Dislocation structure in hot-pressed polycrystalline $TiB_{2}$ (고온가압성형된 다결정 $TiB_{2}$내에서 전위구조)

  • Kwang Bo Shim;Brian Ralph;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.194-202
    • /
    • 1996
  • Transmission electron microscopy has been used to characterize the dislocation structure in hot-pressed titanium diboride. The thin foil samples were prepared by the conventional ion beam thinning technique and reveal the main features associated with the dislocations ; low-angle grain boundaries with dislocation arrays, high-angle grain boundaries with ledges/steps on the boundary planes. The ledges/steps on the grain boundaries were characterized as the origin of defect structures such as dislocation formation or crack propagation near grain boundaries. A fraction of the high angle grain boundaries contained periodic arrays of grain boundary dislocations. The Burger's vectors of the dislocations in the $TiB_{2}$specimens were determined.

  • PDF

A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System (B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Precipitation of L21-type Ni2AlTi Phase in B2-type Intermetallic Compounds NiTi (B2형 금속간화합물 NiTi 중에 L21형 Ni2AlTi상의 석출)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.420-424
    • /
    • 2007
  • Precipitation behavior has been studied in NiTi-based ordered alloy using transmission electron microscopy. The hardness after solution treatment is high in NiTi alloy suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1-type$ $Ni_2AlTi$ precipitates keep a lattice coherency with the NiTi matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of $NiTi-Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.3% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Effect of Orientation on Plastic Deformation Behavior of Yttria Stabilized Zirconia Single Crystal

  • Cheong, Deock-Soo;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.674-679
    • /
    • 2009
  • Yttria stabilized zirconia single crystals show plastic deformation at high temperatures by activating dislocations. The plastic deformation is highly dependent on crystallographic orientation. When the samples were deformed at different orientations, stress-strain curves changed by operating different slip systems. The strength of samples was also highly dependent on crystallographic orientation, i.e., samples without yield drop showed higher strength than that of samples exhibiting yield drop. The slip systems in the sample deformed along <112>, <111> and <001> agreed with the theoretical values of the plastic deformation, following Schmid's Law. Dislocations play a major role in the plastic deformation of this crystal. At the early stages of plastic deformation, all samples exhibited dislocation dipoles and, in the later stages, dislocation interactions occurred by forming nodes, tangles and networks. In this study, three different orientations, [11-2], [111] and [001] were employed to explain the plastic deformation behavior. A microstructural analysis was performed to elucidate the mechanism of the plastic behavior of this crystal.

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.