• Title/Summary/Keyword: Discrete-time systems

Search Result 960, Processing Time 0.032 seconds

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

A Design Method for a discrete-time $\textrm{H}^{\infty}$ Controller (이산시간 $\textrm{H}^{\infty}$제어기의 설계방법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1444-1447
    • /
    • 1997
  • In this paper, the problen of dseigning a H.inf. controller is considered, where the controller is realized through digital equipment. We show that the existing discrete-time controller design method can be improved by usign the inveres bilinear transformation. The usefulness of the given method is confirmed by simulation.

  • PDF

A Study of CHMM Reducing Computational Load Using VQ with Multiple Streams (다중 Stream 구조를 가지는 VQ를 이용하여 연산량을 개선한 CHMM에 관한 연구)

  • Bang, Young Gue;Chung, IK Joo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.233-242
    • /
    • 2006
  • Continuous, discrete and semi continuous HMM systems are used for the speech recognition. Discrete systems have the advantage of low run-time computation. However, vector quantization reduces accuracy and this can lead to poor performance. Continuous systems let us get good correctness but they need much calculation so that occasionally they are unable to be used for practice. Although there are semi-continuous systems which apply advantage of continuous and discrete systems, they also require much computation. In this paper, we proposed the way which reduces calculation for continuous systems. The proposed method has the same computational load as discrete systems but can give better recognition accuracy than discrete systems.

  • PDF

Design of a Discrete Flux Observer by the Power Series Approximation

  • Kim, Kyung-Seo;Kim, Il-Han
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.304-310
    • /
    • 2011
  • The power series approximation method is proposed for real time implementations of a discrete flux observer. The proposed method improves the performance of the discrete flux observer in the case of a low sampling rate and high speed range, where the simple discrete flux observer converted by the Euler method cannot estimate the actual flux precisely. The performance of discrete flux observers with different orders of approximation is compared to find out the proper order of approximation. The validity of the proposed method is verified through simulation and experiment.

Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems (이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.

Discrete Variable Structure Control for Linear Time-Varying Systems

  • Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto;S. Umerjan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.508-508
    • /
    • 2000
  • In this paper, a discrete-time variable structure controller for linear time-varying systems with time-varying disturbances is proposed. The proposed method guarantees that the system state is globally uniformly ultimately bounded (G,U.U.B.) under the existence of external disturbances.

  • PDF

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

Stabilization of Nonlinear Discrete-Time Systems in a Frequency Domain

  • Okuyama, Yoshifumi;Nakamori, Kenji;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.2-33
    • /
    • 2001
  • The robust stability condition for sampled-data control systems with a sector nonlinearity was presented in our previous paper. Although it is applicable only to the sampled-data control system of a certain class, a usual discretetime control system can belongs to this type of class. This paper analyzes the amplitude dependent behavior of nonlinear sampled-data (i.e., discrete-time) control systems in a frequency domain. By considering restricted areas (sectors) in the nonlinear characterisitic, the existence of a sustained oscillation is estimated, and the relationship between the stable/unstable conditions and the result derived from describing function is compared. Based on these considerations, the stabilization of nonlinear discrete-time control systems is examined in the frequency domain.

  • PDF

Simulation Environment of DEVS Models using MATLAB/Simulink (MATLAB/Simulink를 이용한 DEVS 모델의 시뮬레이션 환경 구축)

  • Seo, Kyung-Min;Sung, Chang-Ho;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.219-227
    • /
    • 2008
  • The DEVS (Discrete Event Systems Specification) formalism supports specification of discrete event models in a hierarchical modular manner. MATLAB/Simulink is widely used for modeling, simulating and analyzing continuous and discrete time systems. This paper proposes a realization of the DEVS formalism in MATLAB/ Simulink. The proposed design enables to use a great amount of mathematical packages and functions included in MATLAB /Simulink. The design is also employed as real time simulation and hybrid system simulation which is a mixture of continuous systems and discrete event systems. The paper introduces Simulink-DEVS model, in which a simulation algorithm is embedded. The model consists of a Simulink-atomic model and a Simulink-coupled model. In addition, the time advance algorithm to simulate the model is suggested. The algorithm handles the time synchronization and the accommodation of different concepts specific to continuous and discrete event models. Two experimental results are presented for a pure discrete event model and a hybrid model.

  • PDF