• Title/Summary/Keyword: Discrete Signal

Search Result 629, Processing Time 0.027 seconds

Parameter Estimation Method of Low-Frequency Oscillating Signals Using Discrete Fourier Transforms

  • Choi, Joon-Ho;Shim, Kwan-Shik;Nam, Hae-Kon;Lim, Young-Chul;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • This paper presents a DFT (Discrete Fourier Transform) based estimation algorithm for the parameters of a low-frequency oscillating signal. The proposed method estimates the parameters, i.e., the frequency, the damping factor, the mode amplitude, and the phase, by fitting a discrete Fourier spectrum with an exponentially damped cosine function. Parameter estimation algorithms that consider the spectrum leakage of the discrete Fourier spectrum are introduced. The multi-domain mode test functions are tested in order to verify the accuracy and efficiency of the proposed method. The results show that the proposed algorithms are highly applicable to the practical computation of low-frequency parameter estimations based on DFTs.

Transform Domain Adaptive Filtering with a Chirp Discrete Cosine Transform LMS (CDCTLMS를 이용한 변환평면 적응 필터링)

  • Jeon, Chang-Ik;Yeo, Song-Phil;Chun, Kwang-Seok;Lee, Jin;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.54-62
    • /
    • 2000
  • Adaptive filtering method is one of signal processing area which is frequently used in the case of statistical characteristic change in time-varing situation. The performance of adaptive filter is usually evaluated with complexity of its structure, convergence speed and misadjustment. The structure of adaptive filter must be simple and its speed of adaptation must be fast for real-time implementation. In this paper, we propose chirp discrete cosine transform (CDCT), which has the characteristics of CZT (chrip z-transform) and DCT (discrete cosine transform), and then CDCTLMS (chirp discrete cosine transform LMS) using the above mentioned algorithm for the improvement of its speed of adaptation. Using loaming curve, we prove that the proposed method is superior to the conventional US (normalized LMS) algorithm and DCTLMS (discrete cosine transform LMS) algorithm. Also, we show the real application for the ultrasonic signal processing.

  • PDF

Analysis of Modified Impact Echo applying Discrete Wavelet Transform (이산 웨이블릿 변환을 적용한 수정충격반향기법의 해석)

  • 추진호;조성호;황선근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.309-314
    • /
    • 2003
  • Impact Echo method has been successful in detecting a variety of defects in concrete structure. This study has the objectives to show important aspects of applying the Discrete Wavelet Transform(DWT) to signal processing of Modified Impact Echo(ModIE) Measurement systems and to the understanding of the seismic wave propagation. The data of ModIE were processed by DWT and compared with the results of conventional ModIE Analysis. Although it is inconsistent in the evaluated thickness of concrete lining, the DWT provides the features of separation, synthesis and de-noising in the original signal. The application of technique by wavelet was explained numerically with ABAQUS and performed experimentally with a real scale model in this work. Further works on the possible ways for creating new mother wavelet are specially needed for the enhancement of seismic signal analysis.

  • PDF

Chaos system control via discrete signals (이산 신호에 의한 카오스 시스템 제어)

  • 양기철;권세현;안기형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.147-150
    • /
    • 1997
  • In the study, we consider chua's circuit which is a paradigmatic chaotic system belonging to Lur'e form. It is shown that the dynamic behavior of such a system can be influenced in such a way as to obtain out of chaotic behavior a desired periodic orbit corresponding to an unstable periodic trajectory which exists in the system. This kind of control can be achieved via injection of a single continuous time signal representing the output of the system associated with an unstable periodic orbit embedded in the chaotic attractor We investigate the case when this signal is sampled, i.e. we supply to the system the control signal at discrete time moments only.

  • PDF

A Study on a Reactive Power Control using Digital Filtering (디지털 필터링을 이용한 무효전력 제어에 관한 연구)

  • 우천희;강신준;이덕규;우광방;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.517-524
    • /
    • 1998
  • This paper discusses the development of a reactive power controller using digital signal processing. Digital Signal Processing is the technique of using digital devices to Process continuous signals or data, often in real-time. And DSP algorithms are associated with a discrete time interval between input samples. When one designs a digital filter, one can use a Laplace transform to determine the continuous time frequency response. The corresponding discrete time transform is called Z transform and depends upon discrete samples of the input spaced equally in time. The objectives of this paper are to minimize real power losses and improve the power factor of a given system. Also, the implementation of a direct-form non recursive filter on the TMS320C31 has been described. The application of this microprocessor-based controller using DSP on test system reveals its numerous advantages. Performance and features of the controller for the reactive power control are analyzed.

  • PDF

MIMO Channel Capacity Maximization Using Periodic Circulant Discrete Noise Distribution Signal

  • Poudel, Prasis;Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.13 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Multiple Input Multiple Output (MIMO) is one of the important wireless communication technologies. This paper proposes MIMO system capacity enhancement by using convolution of periodic circulating vector signals. This signal represents statistical dependencies between transmission signal with discrete noise and receiver signal with the linear shifting of MIMO channel capacity by positive extents. We examine the channel capacity, outage probability and SNR of MIMO receiver by adding log determinant signal with validated in terms of numerical simulation.

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique (이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구)

  • Park, Jae-Jun;Kwon, Dong-Jin;Song, Yeong-Cheol;Ahn, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

Application of discrete wavelet transform to prediction of ram stuck phenomena

  • Byun, Seung-Hyun;Cho, Byung-Hak;Shin, Chang-Hoon;Park, Joon-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1445-1449
    • /
    • 2005
  • The ram assembly is important equipment in fueling machine of PHWR(Pressurized Heavy Water Reactor) plant where fuel replacement is possible while the plant is in service. Troubles in the ram assembly can cause lots of difficulties in power plant operation. The ram assembly is typically composed of the B-ram, the L-Ram and the C-Ram. The B-ram is focused in this paper because it plays the most important role in the ram assembly. Among the ram fault phenomena, ram stuck phenomena are the most frequent cases in the B-ram, which has a ball screw mechanism driven by a hydraulic motor. Ram stuck phenomena are due to ball wear and damage in ball nut that increase in proportion to the number of fuel replacement. It is required to predict ram stuck phenomena before they occur. In this paper, a method is proposed for predicting ram stuck phenomena using a discrete wavelet transform. The discrete wavelet transform provides information on both the time and frequency characteristics of the input signals. The proposed method uses the frequency bandwidths of coefficients of discrete wavelet decompositions and detail coefficients of discrete wavelet transform to predict ram stuck phenomena. The signal used in this paper is a torque-related signal such as a hydraulic service outlet pressure signal in a hydraulic driving system or a current signal in a DC motor driving system. Finally, the validity of the proposed method is shown via experiment using ball nut characteristic test equipment that simulates ram stuck phenomena due to increased ball friction in ball nut.

  • PDF

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.