• Title/Summary/Keyword: Discrete Function

Search Result 839, Processing Time 0.028 seconds

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

H Filtering for a Class of Nonlinear Systems with Interval Time-varying Delay (구간시변 지연을 가지는 비선형시스템의 H 필터링)

  • Lee, Sangmoon;Liu, Yajuan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.502-508
    • /
    • 2014
  • In this paper, a delay-dependent $H_{\infty}$ filtering problem is investigated for discrete-time delayed nonlinear systems which include a more general sector nonlinear function instead of employing the commonly used Lipschitz-type function. By using the Lyapunov-Krasovskii functional approach, a less conservative sufficient condition is established for the existence of the desired filter, and then, the corresponding solvability condition guarantee the stability of the filter with a prescribed $H_{\infty}$ performance level. Finally, two simulation examples are given to show the effectiveness of the proposed filtering scheme.

Iterative Learning Control for Discrete Time Nonlinear Systems Based on an Objective Function (목적함수를 고려한 이산 비선형 시스템의 반복 학습 제어)

  • Jeong, Gu-Min;Park, Chong-Ho;Jang, Tae-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1147-1154
    • /
    • 2001
  • In this paper, a new iterative learning control scheme for discrete time nonlinear systems is proposed based on an objective function consisting of the output error and input energy. The relationships between the proposed ILC and the optimal control are described. A new input update law is proposed and its convergence is proved under certain conditions. In this proposed update law, the inputs in the whole control horizon are updated at once considered as one large vector. Some illustrative examples are given to show the effectiveness of the proposed method.

  • PDF

Radial basis collocation method for dynamic analysis of axially moving beams

  • Wang, Lihua;Chen, Jiun-Shyan;Hu, Hsin-Yun
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.333-352
    • /
    • 2009
  • We introduce a radial basis collocation method to solve axially moving beam problems which involve $2^{nd}$ order differentiation in time and $4^{th}$ order differentiation in space. The discrete equation is constructed based on the strong form of the governing equation. The employment of multiquadrics radial basis function allows approximation of higher order derivatives in the strong form. Unlike the other approximation functions used in the meshfree methods, such as the moving least-squares approximation, $4^{th}$ order derivative of multiquadrics radial basis function is straightforward. We also show that the standard weighted boundary collocation approach for imposition of boundary conditions in static problems yields significant errors in the transient problems. This inaccuracy in dynamic problems can be corrected by a statically condensed semi-discrete equation resulting from an exact imposition of boundary conditions. The effectiveness of this approach is examined in the numerical examples.

Proposition and Application of Novel DWT Mother Function for AE signature (AE 신호를 위한 새로운 DWT 기저함수 제안 및 적용)

  • Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.582-587
    • /
    • 2011
  • Acoustic Emission(AE) is widely used for early detection of faults for rotating machinery in these days because of its high sensitivity. AE signal has to need for transferring to low frequency range for the spectrum analysis included the fault mechanism. In transferring process, we lose a lot of fault information caused by unusable signal processing method. Discrete Wavelet Transform(DWT) is a method of signal processing for AE signatures, but the pattern of its mother function is not optimized with AE signals. So, we can lose the fault information when we want to use the DWT for AE signal. Therefore, in this paper, we will propose a novel pattern for DWT mother function, which is optimized with AE signals. And it will be applied to compare the results of DWT by daubechie and novel pattern.

  • PDF

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

A ROUTE-BASED SOLUTION ALGORITHM FOR DYNAMIC USER EQUILIBRIUM ASSIGNMENT (경로기반 해법알고리즘을 이용한 동적통행배분모형의 개발)

  • Sangjin Han
    • Proceedings of the KOR-KST Conference
    • /
    • 2002.02a
    • /
    • pp.97-139
    • /
    • 2002
  • The aim of the present study is to find a good quality user equilibrium assignments under time varying condition. For this purpose, this study introduces a dynamic network loading method that can maintain correct flow propagation as well as flow conservation, and it develops a novel solution algorithm that does not need evaluation of the objective function by modifying the Schittenhelm (1990)'s algorithm. This novel algorithm turns out to be efficient and convenient compared to the conventional Frank-Wolfe (1956) algorithm because the former finds solutions based on routes rather than links so that it can maintain correct flow propagation intrinsically in the time-varying network conditions. The application of dynamic user equilibrium (DUE) assignment model with this novel solution algorithm to test networks including medium-sized one shows that the present DUE assignment model gives rise to high quality discrete time solutions when we adopt the deterministic queuing model for a link performance function, and we associate flows and costs in a proper way.

  • PDF

Depth Control of an Autonomous Underwater Vehicle with System Uncertainties Based on Discrete Variable Structure System (이산 가변구조제어기를 이용한 자율무인잠수정의 심도제어)

  • 이판묵;홍석원;전봉환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 1997
  • This paper presents a discrete-time sliding mode control of an autonomous underwater vehicle with parameter uncertainties and long sample interval based on discrete variable structure system. Although conventional sliding mode montrol techniques are robust to system uncertainties, in the case of the system with long sample interval, the sliding control system reveals chattering phenomenon and even makes the system unstable. This paper considers the AUV which acquires position informations from a surface ship through an acoustic telemetry system with a certain discrete interval. The control system is designed on the basis of a Lyapunov function and a sufficient condition of the switching gain to make the system stable is give. Each component of the switching gain can be determined separately one another. The controller is robust to the uncertainties, and reaching condition of the control system is satisfied for any initial condition. This control law is a generalized form of the discrete sliding mode control and reduce the chattering problem considerably. Motion control of the AUV in the vertical plane shows the effectiveness of the proposed technique.

  • PDF

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.