• 제목/요약/키워드: Discrete Element Analysis

검색결과 344건 처리시간 0.02초

개별요소법을 이용한 도상자갈 침하 영향인자 평가 (Evaluation of the Influence Factors on the Ballast Settlement by using the Discrete Element Method)

  • 김기재;이성진;장승엽;황성호
    • 대한토목학회논문집
    • /
    • 제36권4호
    • /
    • pp.715-722
    • /
    • 2016
  • 국내 대부분의 노선은 자갈도상궤도로 이루어져 있어, 지속적인 유지보수가 요구되고 있다. 따라서, 보다 효과적인 요지보수를 통해 비용 절감을 위해서는 예방보수를 통한 유지보수의 최적화가 필요하다. 여기에는 도상자갈층의 침하 진전모델의 확보가 필수적이다. 그러나, 자갈도상재료는 입자가 큰 조립재료로써 일반 지반재료와는 다른 거동을 보인다. 따라서, 본 연구에서는 자갈재료의 거동에 대한 이해와 침하진전모델의 합리적인 개발을 위해 개별요소해석을 수행하였으며, 입자 형상, 공극률, 하중조합 및 빈도에 따른 침하거동을 비교 분석하였다.

Seismic resistance of dry stone arches under in-plane seismic loading

  • Balic, Ivan;Zivaljic, Nikolina;Smoljanovic, Hrvoje;Trogrlic, Boris
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.243-257
    • /
    • 2016
  • The aim of this study is to investigate the seismic resistance of dry stone arches under in-plane seismic loading. For that purpose, several numerical analyses were performed using the combined finite-discrete element method (FDEM). Twelve types of arches with different ratios of a rise at the mid-span to the span, different thicknesses of stone blocks and different numbers of stone blocks in the arch were subjected to an incremental dynamic analysis based on excitation from three real horizontal and vertical ground motions. The minimum value of the failure peak ground acceleration that caused the collapse of the arch was adopted as a measure of the seismic resistance. In this study, the collapse mechanisms of each type of stone arch, as well as the influence of the geometry of stone blocks and stone arches on the seismic resistance of structures were observed. The conclusions obtained on the basis of the performed numerical analyses can be used as guidelines for the design of dry stone arches.

The discrete element method simulation and experimental study of determining the mode I stress-intensity factor

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Akbarpour, Abbas;Babanouri, Nima
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.379-386
    • /
    • 2018
  • The present study addresses the direct and indirect methods of determining the mode-I fracture toughness of concrete using experimental tests and particle flow code. The direct method used is compaction tensile test and the indirect methods are notched Brazilian disc test, semi-circular bend specimen test, and hollow center cracked disc. The experiments were carried out to determine which indirect method yields the fracture toughness closer to the one obtained by the direct method. In the numerical analysis, the PFC model was first calibrated with respect to the data obtained from the Brazilian laboratory test. The crack paths observed in the simulated tests were in reasonable accordance with experimental results. The discrete element simulations demonstrated that the macro fractures in the models are caused by microscopic tensile breakages on large numbers of bonded particles. The mode-I fracture toughness in the direct tensile test was smaller than the indirect testing results. The fracture toughness obtained from the SCB test was closer to the direct test results. Hence, the semi-circular bend test is recommended as a proper experiment for determination of mode-I fracture toughness of concrete in the absence of direct tests.

개별요소법을 이용한 지반네일에 의해 보강된 굴착사면의 안정해석 (Stability Analysis of Soil Nailed Slope by Discrete Element Method)

  • 김주용;김준석
    • 한국지반공학회지:지반
    • /
    • 제11권4호
    • /
    • pp.49-62
    • /
    • 1995
  • 지반네일을 사용한 급경사면의 보강공법은 지난 20년동안 여러나라에서 사용되어왔다. 본 연구에서는 네일로 보강된 급경사면에 대하여 개별요소법을 이용한 새로운 해석을 수행하였다. 이 방법은 네일에 발생되는 인장응력 및 전단응력을 예측할 수 있어 각 요소별로 지반과 네일의 부분안전율을 산정할 수 있다. 보강된 급경사면은 몇개의 절편으로 나뉘어지고 각 측면들에 탄소성 Winkler 스프링으로 연결되었다고 가정함으로써 거동을 모델링하였다. 네일을 스프링으로 대치시키기 위하여 내일과 주변지반 사이의 합리적인 역학기구가 가정되어 사용되었다. 또한 실제 굴착과정에 따른 네일의 설치단계를 고려함으로써 현장지반에서 관측된 네일의 인장력을 비교적 잘 예측할 수 있어 보다 적절한 안전율 산정이 가능하다.

  • PDF

Fe-Si-Al-Graphite 분말 혼합체의 압축 특성 연구 (Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures)

  • 정준혁;최진일
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.300-304
    • /
    • 2020
  • In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powder-based magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Al-graphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.

이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구 (Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging)

  • 유승훈;우호길
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • 제11권4호
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

사질토의 변형 측정을 위한 최적의 디지털 이미지 해석 기법 (An Optimal Digital Image Analysis Technique for Measuring Deformation of Granular Soils)

  • 장의룡;정영훈;정충기
    • 한국지반공학회논문집
    • /
    • 제25권12호
    • /
    • pp.119-130
    • /
    • 2009
  • 흙의 변형을 측정하기 위해 적용되는 이미지 해석 기법으로는 Particle Image Velocimetry(PIV)와 Digital Image Correlation(DIC)가 있으며, 이 기법들이 더욱 널리 활용되기 위해서는 각 기법에 따라 다양한 조건에서 정밀도를 평가하는 연구가 필요하다. 본 연구에서는 이미지 해상도, 변위 및 변형 정도, 픽셀 집합의 크기 및 해석 기법의 다양한 요소를 고려하여 사질토의 변형을 관찰하기에 적합한 최적의 이미지 해석 기법을 제시하고자 한다. 개별요소법(DEM)을 이용하여 구성된 가상의 사질토 이미지를 활용하여 이미지 해석을 행하고 변위를 산정한 후, 개별 요소법의 변위와 비교하였다. 각 영향 요소들이 정확도에 미치는 영향을 분석하였고, 변위 및 변형 정도에 따라 최적의 이미지 해석조건을 제시할 수 있었다.

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

오차 예측과 격자밀도 지도를 이용한 적응 Delaunay 격자생성방법 (Adaptive Delaunay Mesh Generation Technique Based on a Posteriori Error Estimation and a Node Density Map)

  • 홍진태;이석렬;박철현;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.334-341
    • /
    • 2004
  • In this study, a remeshing algorithm adapted to the mesh density map using the Delaunay mesh generation method is developed. In the finite element simulation of forging process, the numerical error increases as the process goes on because of discrete property of the finite elements and distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical error will be highly increased. However, it is not desirable to use a uniformly fine mesh in the whole domain. Therefore, it is necessary to reduce the analysis error by constructing locally refined mesh at the region where the error is concentrated such as at the die corner. In this paper, the point insertion algorithm is used and the mesh size is controlled by using a mesh density map constructed with a posteriori error estimation. An optimized smoothing technique is adopted to have smooth distribution of the mesh and improve the mesh element quality.