DOI QR코드

DOI QR Code

Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures

Fe-Si-Al-Graphite 분말 혼합체의 압축 특성 연구

  • Jeong, Jun Hyeok (Department of Mechanical Engineering, Hanbat National University) ;
  • Choi, Jinnil (Department of Mechanical Engineering, Hanbat National University)
  • Received : 2020.06.24
  • Accepted : 2020.07.29
  • Published : 2020.08.28

Abstract

In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powder-based magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Al-graphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.

Keywords

References

  1. J. Li, X. Peng, Y. Yang and H. Ge: J. Magn. Magn. Mater., 426 (2017) 132. https://doi.org/10.1016/j.jmmm.2016.11.068
  2. H. Shokrollahi and K. Janghorban: J. Mater. Process. Technol., 189 (2007) 1. https://doi.org/10.1016/j.jmatprotec.2007.02.034
  3. W. Xu, C. Wu and M. Yan: J. Magn. Magn. Mater., 381 (2015) 116. https://doi.org/10.1016/j.jmmm.2014.12.073
  4. Z. Zhang, W. Xu, T. Guo, Y. Jiang and M. Yan: J. Alloys Compd., 594 (2014) 153. https://doi.org/10.1016/j.jallcom.2014.01.123
  5. G. Zhao, C. Wu and M. Yan: J. Magn. Magn. Mater., 399 (2016) 51. https://doi.org/10.1016/j.jmmm.2015.09.054
  6. R. Bai, Z. Zhu, H. Zhao, S. Mao and Q. Zhong: J. Magn. Magn. Mater., 433 (2017) 285. https://doi.org/10.1016/j.jmmm.2017.03.016
  7. J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang and R. B. Yang: J. Alloys Compd., 548 (2013) 18. https://doi.org/10.1016/j.jallcom.2012.08.114
  8. Y. Sheng, C. J. Lawrence, B. J. Briscoe and C. Thornton: Eng. Comput., 21 (2004) 304. https://doi.org/10.1108/02644400410519802
  9. J. H. Jeong, S. K. Ryu, S. J. Park, H. C. Shin and J. H. Yu: Comput. Mater. Sci., 100 (2015) 21. https://doi.org/10.1016/j.commatsci.2014.11.028
  10. J. F. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault, F. V. Donze and P. Doremus: Powder Technol., 208 (2011) 537. https://doi.org/10.1016/j.powtec.2010.08.056
  11. C. L. Martin: J. Mech. Phys. Solids., 52 (2004) 1691. https://doi.org/10.1016/j.jmps.2004.03.004
  12. N. A. Fleck: J. Mech. Phys. Solids., 43 (1995) 1409. https://doi.org/10.1016/0022-5096(95)00039-L
  13. E. Legarra, E. Apinaniz, F. Plazaola, J. A. Jimenez and A. R. Pierna: J. Magn. Magn. Mater., 320 (2008) 688. https://doi.org/10.1016/j.jmmm.2008.04.039
  14. S. Brown and G. Abou-Chedid: J. Mech. Phys. Solids., 42 (1994) 383. https://doi.org/10.1016/0022-5096(94)90024-8
  15. C. L. Martin, D. Bouvard and S. Shima: J. Mech. Phys. Solids., 51 (2003) 667. https://doi.org/10.1016/S0022-5096(02)00101-1
  16. E. Olsson and P. L. Larsson: Powder Technol., 243 (2013) 71. https://doi.org/10.1016/j.powtec.2013.03.040