• Title/Summary/Keyword: Discrete Approximation

Search Result 247, Processing Time 0.029 seconds

Analysis and Approximation of Linear feedback control problems for the Boussinesq equations

  • 최영미;이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.6-6
    • /
    • 2003
  • In this work we consider the mathematical formulation and numerical resolution of the linear feedback control problem for Boussinesq equations. The controlled Boussinesq equations is given by $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla}u+{\nabla}p={\beta}{\theta}g+f+F\;\;in\;(0,\;T){\times}\;{\Omega}$$, $${\nabla}{\cdot}u=0\;\;in\;(0,\;T){\times}{\Omega}$$, $$u|_{{\partial}{\Omega}=0,\;u(0,x)=\;u_0(x)$$ $$\frac{{\partial}{\theta}}{{\partial}t}-k{\Delta}{\theta}+(u{\cdot}){\theta}={\tau}+T,\;\;in(0,\;T){\times}{\Omega}$$ $${\theta}|_{{\partial}{\Omega}=0,\;\;{\theta}(0,X)={\theta}_0(X)$$, where $\Omega$ is a bounded open set in $R^{n}$, n=2 or 3 with a $C^{\infty}$ boundary ${\partial}{\Omega}$. The control is achieved by means of a linear feedback law relating the body forces to the velocity and temperature field, i.e., $$f=-{\gamma}_1(u-U),\;\;{\tau}=-{\gamma}_2({\theta}-{\Theta}}$$ where (U,$\Theta$) are target velocity and temperature. We show that the unsteady solutions to Boussinesq equations are stabilizable by internal controllers with exponential decaying property. In order to compute (approximations to) solution, semi discrete-in-time and full space-time discrete approximations are also studied. We prove that the difference between the solution of the discrete problem and the target solution decay to zero exponentially for sufficiently small time step.

  • PDF

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;이광식;이동인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.84-89
    • /
    • 2001
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), composite discharge(corona + surlace discharge). Multiresolution analysis was used for performing discrete wavelet transform PD signals was decomposed into "approximation" and "detail" cOmpJnents until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. 1be results show that in corona discharge the segment 7, 8, 9, 10, 1] values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric chscharge pattern because coupled both corona and dielectric oounded discharges. We can confimJly discriminate the type of PD source.

  • PDF

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

The Discrete Fourier Transform Using the Complex Approximations of the Ring of Algebraic Integer (복소수의 대수적 정수환 근사화를 이용한 이산 후리에 변환)

  • 김덕현;김재공
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.18-26
    • /
    • 1993
  • This paper presents a multiplier free technique for the complex DFT by rotations and additions based on the complex approximation of the ring of algebraic integers. Speeding-up the computation time and reducing the dynamic range growth has been achieved by the elimination of multiplication. Moreover the DFT of no twiddle factor quantization errors is possible. Numerical examples are given to prove the algorithm and the applicable size of the DFT is 16 has been concluded.

  • PDF

SUPERCONVERGENT GRADIENT RECOVERY FOR THE PARABOLIC INITIAL BOUNDARY VALUE PROBLEM

  • LAKHANY, AM;WHITEMAN, JR
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • Gradient recovery techniques for the second order elliptic boundary value problem are well known. In particular, the Midpoint and the Vertex Recovery Operator have been studied by various authors and under suitable assumptions on the regularity of the unknown solution superconvergence property of these recovered gradients have been proved. In this paper we extend these results to the recovered gradient of the finite element approximation to a model initial-boundary value problem, and go on to prove superconvergence result for this recovered gradient in a discrete (in time) error norm.

  • PDF

TIME DISCRETIZATION WITH SPATIAL COLLOCATION METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

  • Kim Chang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.19-38
    • /
    • 2006
  • We analyze the spectral collocation approximation for a parabolic partial integrodifferential equations(PIDE) with a weakly singular kernel. The space discretization is based on the spectral collocation method and the time discretization is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability and second order convergence result for fully discrete scheme.

  • PDF

ANALYSIS OF A MESHFREE METHOD FOR THE COMPRESSIBLE EULER EQUATIONS

  • Kim, Yong-Sik;Pahk, Dae-Hyeon
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1081-1098
    • /
    • 2006
  • Mathematical analysis is made on a mesh free method for the compressible Euler equations. In particular, the Moving Least Square Reproducing Kernel (MLSRK) method is employed for space approximation. With the backward-Euler method used for time discretization, existence of discrete solution and it's $L^2-error$ estimate are obtained under a regularity assumption of the continuous solution. The result of numerical experiment made on the biconvex airfoil is presented.

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS

  • Lee, Hyung-Chun;Kim, Soo-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.681-715
    • /
    • 2004
  • Mathematical formulation and numerical solutions of an optimal Dirichlet boundary control problem for the Boussinesq equations are considered. The solution of the optimal control problem is obtained by adjusting of the temperature on the boundary. We analyze finite element approximations. A gradient method for the solution of the discrete optimal control problem is presented and analyzed. Finally, the results of some computational experiments are presented.

Analysis of transport properties of SLS polysilicon TFTs

  • Fortunato, G.;Bonfiglietti, A.;Valletta, A.;Mariucci, L.;Rapisarda, M.;Brotherton, S.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.513-518
    • /
    • 2006
  • An investigation of the transport properties of polysilicon TFTs, using sequential laterally solidified, SLS, material, is presented. This material has a location controlled distribution of grain boundaries, GBs, which makes it particularly useful for the analysis of their influence on the performance of polysilicon TFTs, and to address the issue of the role of spatially localised trapping states. The experimental results were analyzed by using numerical simulations, and the effective medium approximation was compared with a discrete grain model.

  • PDF