References
- Sobolev Spaces R.Adams
- Siberian Math. J. v.39 no.5 Solvability of stationary boundary control problems for heat convection equations G.V.Alekseev https://doi.org/10.1007/BF02672906
- Math. Modelling Numer. Anal. v.27 Some optimal control problems of multistate equations appearing in fluid mechanics F.Abergel;F.Casas https://doi.org/10.1051/m2an/1993270202231
- Comm. Pure Appl. Math. v.17 Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions S.Agmon;A.Douglis;L.Nirenberg https://doi.org/10.1002/cpa.3160170104
- Theoret. Comput. Fluid Dynamics v.1 On Some Control Problems in Fluid Mechanics F.Abergel;R.Temam https://doi.org/10.1007/BF00271794
- The Mathematical Foundations of the Finite Element Method with Applicaions to Partial Differential Equations Survey lectures on the mathematical foundations of the finite element method I. Babuska;A. Aziz(ed.)
- Numer. Math. v.36 Finite-dimensional approximation of non-linear problems Part I : branches of nonsingular solutions F. Brezzi;J. Rappaz;P. A. Raviart https://doi.org/10.1007/BF01395985
- The Finite Element Method for Elliptic Problems P. Cialet
- New Developments in Differential Equtions Oprimal Control of a System Governed by the Navier-Stokes Equations Coupled with the Heat equations P. Cuvelier;W. Eckhaus(ed.)
- Nonlinear Functional Analysis K.Deimling
- SIAM J. Control Optim. v.32 no.5 Optimal controls of Navier-Stokes equations M.Desai;K. Ito https://doi.org/10.1137/S0363012992224972
- Mat. Sb. v.118 no.3 Properties of solutions to some extrimal problems related to the Navier-Stokes system A. V. Fursikov
- SIAM J. Control Optim. v.36 no.2 Local exact boundary controllability of the Boussinesq equation A. V. Fursikov;O. Yu. Imanuvilov https://doi.org/10.1137/S0363012996296796
- Proc. Roy. Soc. London Ser. A v.439 Oprimal controls for viscous flow problems H. O. Fattorini;S. S. Sritharan https://doi.org/10.1098/rspa.1992.0135
- Finite Element Methods for Navier-Stokes Equations V. Girault;P. A. Raviart
- Finite element methods for incompressible viscous flows : A guide to theory, practice and algorithms M. Gunzburger
- J. Math. Syst. Estim. Control v.3 Heating and Cooling Control of Temperature Distributions along Boundaries of Flow Domains M. Gunzburger;L. Hou;T. Svobodny
- SIAM J. Numer. Anal. v.29 no.2 Treating inhomogenous essential boundary conditions in finite element methods M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1137/0729024
- Math. Comp. v.57 no.195 Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.2307/2938666
- Math. Modelling Numer. Anal. v.25 no.6 Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1051/m2an/1991250607111
- SIAM J. Control Optim. v.30 no.1 Boundary velocity control of incompressible flow with an application to viscous drag reduction M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1137/0330011
- Compt. Methods Appl. Mech. Engrg. v.118 Analysis, approximation, and computation of a coupled solid/fluid temperature control problem M. Gunzburger;H. Lee https://doi.org/10.1016/0045-7825(94)00022-0
- SIAM J. Control Optim. v.39 no.2 The Velocity Tracking Problem for Navier-Stokes Flows with Boundary Control M. D. Gunzburger;S. Manservisi
- SIAM J. Numer. Anal. v.37 no.5 Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flow with Distributed Control M. D. Gunzburger;S. Manservisi
- SIAM J. Control Optim. v.37 no.6 The Velocity Tracking Problem for Navier-Stokes Flows with Bounded Distributed Controls M. D. Gunzburger;S. Manservisi
- Ph.D. Thesis, Carnegie Mellon University Analysis and finite element approximation of some optimal control problem associated with the Navier-Stokes equations L. Hou
- SIAM J. Control Optim. v.35 no.6 Dynomics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls L. S.Hou;Y. Yan https://doi.org/10.1137/S036301299529286X
- SIAM J. Control Optim. v.35 no.2 Dynamics for controlled Navier-Stokes systems with distributed controls L. S. Hou;Y. Yan https://doi.org/10.1137/S0363012994274926
- SIAM J. Sci. Comput. v.19 no.6 Optimal control of thermally convected fluid flows K. Ito;S. S. Ravindran https://doi.org/10.1137/S1064827596299731
- Advances in Comp. Math. v.19 Analysis and computaionsl methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations H.-C. Lee
- SIAM J. Control Optim. v.39 no.2 Analysis of Neumann boundary oprimal control problems for the stationary Boussinesq equations including solid media H.-C. Lee;O. Yu. Imnuvilov https://doi.org/10.1137/S0363012998347110
- J. Math. Anal. Appl. v.242 no.2 Analysis of optimal control problems for the 2-D stationary Boussinesq equations H.-C. Lee;O. Yu. Imnuvilov https://doi.org/10.1006/jmaa.1999.6651
- Non-homogeneous boundary value problems and applications v.1 J. L. Lious;E. Magnes
- Math. Methods. Appl. Sci. v.23 Piecewise optimal distributed controls for 2D Boussinesq equations H.-C. Lee;B. C. Shin https://doi.org/10.1002/(SICI)1099-1476(200002)23:3<227::AID-MMA112>3.0.CO;2-5
- Appl. Math. Optim. v.44 no.2 Dynamics for linear feedback controlled Benard equations with distributed controls H. C. Lee;B. C. Shin https://doi.org/10.1007/s00245-001-0014-x
- Int. J. Numer. Meth. Fluids v.25 Numerical solutions of optimal control for thermally convective flows S. S. Ravindran https://doi.org/10.1002/(SICI)1097-0363(19970730)25:2<205::AID-FLD547>3.0.CO;2-N
- Comm. Partial Differential Equations v.22 no.5-6 Regularity and perturbation results for mixed second order elliptic problems G. Savare https://doi.org/10.1080/03605309708821287
- J. Funct. Anal. Appl. v.152 Elliptic equations in Lipshitz domains G. Savare https://doi.org/10.1006/jfan.1997.3158
- Navier-Stokes Equations R. Temam
- Fundamental principles of the theory of extremal problems V. Tikhomirov
- Comput. & Fluids v.1 A numerical solution of the Navier-Stokes equations using the finite element methods C. Taylor;P. Hood https://doi.org/10.1016/0045-7930(73)90027-3
Cited by
- FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS vol.51, pp.3, 2014, https://doi.org/10.4134/BKMS.2014.51.3.847
- Boundary element methods for Dirichlet boundary control problems vol.33, pp.18, 2010, https://doi.org/10.1002/mma.1356
- An energy space finite element approach for elliptic Dirichlet boundary control problems vol.129, pp.4, 2015, https://doi.org/10.1007/s00211-014-0653-x
- Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems vol.28, pp.7-8, 2007, https://doi.org/10.1080/01630560701493305
- On the Rayleigh–Bénard–Marangoni system and a related optimal control problem 2017, https://doi.org/10.1016/j.camwa.2017.07.038
- Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations vol.46, pp.3, 2007, https://doi.org/10.1137/060649999
- Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/7959761