DOI QR코드

DOI QR Code

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS

  • Published : 2004.07.01

Abstract

Mathematical formulation and numerical solutions of an optimal Dirichlet boundary control problem for the Boussinesq equations are considered. The solution of the optimal control problem is obtained by adjusting of the temperature on the boundary. We analyze finite element approximations. A gradient method for the solution of the discrete optimal control problem is presented and analyzed. Finally, the results of some computational experiments are presented.

Keywords

References

  1. Sobolev Spaces R.Adams
  2. Siberian Math. J. v.39 no.5 Solvability of stationary boundary control problems for heat convection equations G.V.Alekseev https://doi.org/10.1007/BF02672906
  3. Math. Modelling Numer. Anal. v.27 Some optimal control problems of multistate equations appearing in fluid mechanics F.Abergel;F.Casas https://doi.org/10.1051/m2an/1993270202231
  4. Comm. Pure Appl. Math. v.17 Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions S.Agmon;A.Douglis;L.Nirenberg https://doi.org/10.1002/cpa.3160170104
  5. Theoret. Comput. Fluid Dynamics v.1 On Some Control Problems in Fluid Mechanics F.Abergel;R.Temam https://doi.org/10.1007/BF00271794
  6. The Mathematical Foundations of the Finite Element Method with Applicaions to Partial Differential Equations Survey lectures on the mathematical foundations of the finite element method I. Babuska;A. Aziz(ed.)
  7. Numer. Math. v.36 Finite-dimensional approximation of non-linear problems Part I : branches of nonsingular solutions F. Brezzi;J. Rappaz;P. A. Raviart https://doi.org/10.1007/BF01395985
  8. The Finite Element Method for Elliptic Problems P. Cialet
  9. New Developments in Differential Equtions Oprimal Control of a System Governed by the Navier-Stokes Equations Coupled with the Heat equations P. Cuvelier;W. Eckhaus(ed.)
  10. Nonlinear Functional Analysis K.Deimling
  11. SIAM J. Control Optim. v.32 no.5 Optimal controls of Navier-Stokes equations M.Desai;K. Ito https://doi.org/10.1137/S0363012992224972
  12. Mat. Sb. v.118 no.3 Properties of solutions to some extrimal problems related to the Navier-Stokes system A. V. Fursikov
  13. SIAM J. Control Optim. v.36 no.2 Local exact boundary controllability of the Boussinesq equation A. V. Fursikov;O. Yu. Imanuvilov https://doi.org/10.1137/S0363012996296796
  14. Proc. Roy. Soc. London Ser. A v.439 Oprimal controls for viscous flow problems H. O. Fattorini;S. S. Sritharan https://doi.org/10.1098/rspa.1992.0135
  15. Finite Element Methods for Navier-Stokes Equations V. Girault;P. A. Raviart
  16. Finite element methods for incompressible viscous flows : A guide to theory, practice and algorithms M. Gunzburger
  17. J. Math. Syst. Estim. Control v.3 Heating and Cooling Control of Temperature Distributions along Boundaries of Flow Domains M. Gunzburger;L. Hou;T. Svobodny
  18. SIAM J. Numer. Anal. v.29 no.2 Treating inhomogenous essential boundary conditions in finite element methods M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1137/0729024
  19. Math. Comp. v.57 no.195 Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.2307/2938666
  20. Math. Modelling Numer. Anal. v.25 no.6 Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1051/m2an/1991250607111
  21. SIAM J. Control Optim. v.30 no.1 Boundary velocity control of incompressible flow with an application to viscous drag reduction M. Gunzburger;L. Hou;T. Svobodny https://doi.org/10.1137/0330011
  22. Compt. Methods Appl. Mech. Engrg. v.118 Analysis, approximation, and computation of a coupled solid/fluid temperature control problem M. Gunzburger;H. Lee https://doi.org/10.1016/0045-7825(94)00022-0
  23. SIAM J. Control Optim. v.39 no.2 The Velocity Tracking Problem for Navier-Stokes Flows with Boundary Control M. D. Gunzburger;S. Manservisi
  24. SIAM J. Numer. Anal. v.37 no.5 Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flow with Distributed Control M. D. Gunzburger;S. Manservisi
  25. SIAM J. Control Optim. v.37 no.6 The Velocity Tracking Problem for Navier-Stokes Flows with Bounded Distributed Controls M. D. Gunzburger;S. Manservisi
  26. Ph.D. Thesis, Carnegie Mellon University Analysis and finite element approximation of some optimal control problem associated with the Navier-Stokes equations L. Hou
  27. SIAM J. Control Optim. v.35 no.6 Dynomics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls L. S.Hou;Y. Yan https://doi.org/10.1137/S036301299529286X
  28. SIAM J. Control Optim. v.35 no.2 Dynamics for controlled Navier-Stokes systems with distributed controls L. S. Hou;Y. Yan https://doi.org/10.1137/S0363012994274926
  29. SIAM J. Sci. Comput. v.19 no.6 Optimal control of thermally convected fluid flows K. Ito;S. S. Ravindran https://doi.org/10.1137/S1064827596299731
  30. Advances in Comp. Math. v.19 Analysis and computaionsl methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations H.-C. Lee
  31. SIAM J. Control Optim. v.39 no.2 Analysis of Neumann boundary oprimal control problems for the stationary Boussinesq equations including solid media H.-C. Lee;O. Yu. Imnuvilov https://doi.org/10.1137/S0363012998347110
  32. J. Math. Anal. Appl. v.242 no.2 Analysis of optimal control problems for the 2-D stationary Boussinesq equations H.-C. Lee;O. Yu. Imnuvilov https://doi.org/10.1006/jmaa.1999.6651
  33. Non-homogeneous boundary value problems and applications v.1 J. L. Lious;E. Magnes
  34. Math. Methods. Appl. Sci. v.23 Piecewise optimal distributed controls for 2D Boussinesq equations H.-C. Lee;B. C. Shin https://doi.org/10.1002/(SICI)1099-1476(200002)23:3<227::AID-MMA112>3.0.CO;2-5
  35. Appl. Math. Optim. v.44 no.2 Dynamics for linear feedback controlled Benard equations with distributed controls H. C. Lee;B. C. Shin https://doi.org/10.1007/s00245-001-0014-x
  36. Int. J. Numer. Meth. Fluids v.25 Numerical solutions of optimal control for thermally convective flows S. S. Ravindran https://doi.org/10.1002/(SICI)1097-0363(19970730)25:2<205::AID-FLD547>3.0.CO;2-N
  37. Comm. Partial Differential Equations v.22 no.5-6 Regularity and perturbation results for mixed second order elliptic problems G. Savare https://doi.org/10.1080/03605309708821287
  38. J. Funct. Anal. Appl. v.152 Elliptic equations in Lipshitz domains G. Savare https://doi.org/10.1006/jfan.1997.3158
  39. Navier-Stokes Equations R. Temam
  40. Fundamental principles of the theory of extremal problems V. Tikhomirov
  41. Comput. & Fluids v.1 A numerical solution of the Navier-Stokes equations using the finite element methods C. Taylor;P. Hood https://doi.org/10.1016/0045-7930(73)90027-3

Cited by

  1. FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS vol.51, pp.3, 2014, https://doi.org/10.4134/BKMS.2014.51.3.847
  2. Boundary element methods for Dirichlet boundary control problems vol.33, pp.18, 2010, https://doi.org/10.1002/mma.1356
  3. An energy space finite element approach for elliptic Dirichlet boundary control problems vol.129, pp.4, 2015, https://doi.org/10.1007/s00211-014-0653-x
  4. Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems vol.28, pp.7-8, 2007, https://doi.org/10.1080/01630560701493305
  5. On the Rayleigh–Bénard–Marangoni system and a related optimal control problem 2017, https://doi.org/10.1016/j.camwa.2017.07.038
  6. Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations vol.46, pp.3, 2007, https://doi.org/10.1137/060649999
  7. Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/7959761