• 제목/요약/키워드: Discovery DNA

검색결과 161건 처리시간 0.024초

Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

  • Farh, Mohamed El-Agamy;Han, Jeong A.;Kim, Yeon-Ju;Kim, Jae Chun;Singh, Priyanka;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples ($R^2=0.95$), disease severity index ($R^2=0.99$), and colony-forming units ($R^2=0.87$). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of $5.82{\pm}2.35pg/g$ to $892.34{\pm}103.70pg/g$ of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.

토양의 DNA로부터 4-Hydroxyphenylpyruvate Dioxygenase 유전자 탐색 및 분리 (Screening and Isolation of a Gene Encoding 4-Hydroxyphenylpyruvate Dioxygenase from a Metagenomic Library of Soil DNA)

  • 윤상순;이정한;김수진;김삼선;박인철;이미혜;구본성;윤상홍;여윤수
    • Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.345-351
    • /
    • 2005
  • 난배양 미생물로부터 천연물질을 찾기 위하여 토양으로부터 직접분리 된 DNA와 cosmid vector를 이용하여 metagenomic library를 제작하고 탐색 하였다. 대장균에서 발현되는 유전자은행 초기 탐색 결과 LB배지에서 잘 자라면서 브라운 색깔을 내는 여러 개의 clone을 선발 하였다. 선발된 여러 후보 clone중 pYS85C는 돌연변이를 유도하였으며 색깔을 생산하지않는 clone 들에 대하여 염기서열을 결정 하였다. 돌연변이clone들로부터 결정된 pYS85C 염기서열 결과 아미노산이 393개이며 44.5 kDa으로 색소형성에 관여하는 4-hydroxyphenylpyruvic acid dioxygenase(HPPD) 유전자로 판명 되었다. 또한, BLAST비교 분석에서 이효소는 기존에 밝혀진 HPPD효소와 60% 정도의 identity를 보였고 C-말단에서는 많은 conserved domain이 있었다. 이러한 결과로 볼 때 천연물질을 합성 할 수 있는 유전자는 토양DNA로부터 직접 분리되어 발현될 수 있으며 이러한 기술은 새로운 물질을 찾는데 중요한 tool이 될 수 있다.

Novel Discovery of Two Heterotrichid Ciliates, Climacostomum virens and Fabrea salina (Ciliophora: Heterotrichea: Heterotrichida) in Korea

  • Kim, Ji Hye;Shin, Mann Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • 제31권3호
    • /
    • pp.182-190
    • /
    • 2015
  • Two heterotrichid ciliates, Climacostomum virens (Ehrenberg, 1838) Stein, 1859 from brackish water and freshwater, and Fabrea salina Henneguy, 1890 from a solar saltern, were collected in Korea. They are novelly investigated in Korea by means of live observation, protargol staining and nuclear small subunit (SSU) rRNA gene sequencing. Climacostomum virens is characterized by pouch-like body shape, body length of $200-370{\mu}m$ in vivo, conspicuous cytopharyngeal tube, macronuclei ribbon-like shape, and one to four in number, with or without symbiont algae in cytoplasm, 34-66 somatic kineties, 67-113 adoral zone of membranelles, 8-42 peristomial kineties, 24-37 apical membranelles. SSU rDNA sequence size is 1,591 bp and GC contents 48.52%. Fabrea salina is also characterized by scoop-like body shape with proboscis, body length of $190-240{\mu}m$ in vivo, one to two rod-shaped macronuclei, oval micronuclei, grayish green cortical granules, 104-186 somatic kineties, 4-8 preoral kineties, 7-19 peristomial kineties and fragmented paroral membrane. SSU rDNA sequence size is 1,598 bp and GC contents 47.50%.

디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구 (The Evolution and Value of Diphtheria Vaccine)

  • 배경동
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

An EST-based approach for identifying genes expressed in the gills of olive flounder Paralichthys olivaceus

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Kim, Young-Ok;Kim, Jong-Hyun;Kim, Kyung-Kil;Kim, Woo-Jin;Myeong, Jeong-In
    • 한국어병학회지
    • /
    • 제22권3호
    • /
    • pp.383-389
    • /
    • 2009
  • Analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics studies. As part of studies on the immune system of olive flounder, a total of 251 EST sequences from gill cDNA library were generated to identify and characterize important genes in the immune machanisms of olive flounder. Of the 251 clones, 126 clones (50.2%) were identified as orthologues of known genes from olive flounder and other organisms. Among the 126 EST clones, 16 clones (12.7%) were representing 9 unique genes identified as homologous to the previously reported olive flounder ESTs, 100 clones (79.4%) representing 103unique genes were identified as orthologs of known genes from other organisms. We also identified several kinds of immune associated proteins, indicating EST as a powerful method for identifying immune related genes of fish as well as identifying novel genes. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Edward, Roy
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.391-396
    • /
    • 2009
  • Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.

Anaplasma marginale and A. platys Characterized from Dairy and Indigenous Cattle and Dogs in Northern Vietnam

  • Chien, Nguyen Thi Hong;Nguyen, Thi Lan;Bui, Khanh Linh;Van Nguyen, Tho;Le, Thanh Hoa
    • Parasites, Hosts and Diseases
    • /
    • 제57권1호
    • /
    • pp.43-47
    • /
    • 2019
  • Anaplasma marginale and A. platys were detected and characterized (16S rDNA sequence analysis) from dairy and indigenous cattle, and the latter in domestic dogs in Vietnam. A phylogenetic tree was inferred from 26 representative strains/species of Anaplasma spp. including 10 new sequences from Vietnam. Seven of our Vietnamese sequences fell into the clade of A. marginale and 3 into A. platys, with strong nodal support of 99 and 90%, respectively. Low genetic distances (0.2-0.4%) within each species supported the identification. Anaplasma platys is able to infect humans. Our discovery of this species in cattle and domestic dogs raises considerable concern about zoonotic transmission in Vietnam. Further systematic investigations are needed to gain data for Anaplasma spp. and members of Anaplasmataceae in animal hosts, vectors and humans across Vietnam.

Description of Microscopic Morphology of Leptochiton hakodatensis (Mollusca: Polyplacophora)

  • Park, Jina;Lee, Yucheol;Kim, Yukyung;Park, Joong-Ki
    • Animal Systematics, Evolution and Diversity
    • /
    • 제38권1호
    • /
    • pp.14-19
    • /
    • 2022
  • Leptochiton Gray, 1847 is one of the most ancient chiton groups which includes more than 130 species that occur in cold and deep waters worldwide. Due to their small-sized body, they are often confused as juveniles of other chiton species. Moreover, lack of morphological information makes species identification of this group very challenging. To date, only two Leptochiton species(L. fuliginatus and L. rugatus) have been reported from Korean waters. In this study, we found L. hakodatensis(Thiele, 1909) for the first time in Korea and described microscopic morphological characters of valves (tegmentum sculpture), girdle scale, and radula using a scanning electron microscopy (SEM). Leptochiton hakodatensis is morphologically similar to L. fuliginatus and L. rugatus, but differently characterized by having dorso-ventrally rounded (not carinated) intermediate valves, girdle (perinotum) scales sculptured with 4-7 longitudinal ribs, and bicuspid major lateral teeth of radula. In addition to morphological examination, we determined the partial mitochondrial cytochrome c oxidase subunit I(cox1) as a DNA barcode sequence information. This is the first report that describes microscopic characters (tegmentum of valves, girdle structure, and radula) of L. hakodatensis using a SEM. This study provides a morphological basis for describing Leptochiton species and discovery of a "hidden" species of this genus.

Noninvasive Prenatal Diagnosis using Cell-Free Fetal DNA in Maternal Plasma: Clinical Applications

  • Yang, Young-Ho;Han, Sung-Hee;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • 제8권1호
    • /
    • pp.1-16
    • /
    • 2011
  • 현재 사용되고 있는 침습적 산전진단법(양수천자, 융모막샘플링)은 1-2%의 태아 손실이 초래되어, 비침습적 산전진단법이 산전진단의 궁극적인 목표로 대두되어 왔다. 1997년 Dr. Lo에 의해서 임신부 혈장 내에 세포 유리 태아 DNA (cffDNA)의 존재가 발견된 후 비침습적 산전진단의 새로운 가능성이 열렸으며, 과거 10년간 이에 대한 연구의 많은 진전을 보여주고 있다. 최근에 cffDNA를 이용한 Hemophilia A와 듀센형 근이영양증 등 반성 유전병(X-linked disorders) 진단에 필수적인 산전태아의 성 판정과 RhD-음성 임신부에서 태아의 RhD유전자 핵형 분석 등이 이미 외국에서 임상적으로 적용되고 있으나, 한국에서는 아직 실용화되지 않고 있다. CffDNA의 임상 사용에는 여전히 많은 제약점이 있으며, 이는 임신부 혈장 내 cffDNA 양에 비해 많은 양의 모태 DNA가 존재하고, 종래에 사용되었던 특이적인 Y염색체 유전자(Y-specific gene)는 남아 태아 임신 시에만 적용된다는 것에 기인한 다. 따라서 모든 태아에 적용할 수 있는 태아 성과 무관한 마커(sex-independent universal fetal marker as internal positive controls)가 요구되며, 이를 이용하여 정확한 태아 DNA를 검출할 수 있다. 본 연구진은 국내 처음으로 임신부 혈장 내에 cffDNA를 이용하여 SRY 유전자, RhD-exon 7, 태아 성과 무관한 DNA마커(universal fetal DNA marker)로써 RASSF1A 유전자를 실시간 중합효소연쇄반응(RT- PCR)을 사용하여 뛰어난 결과를 얻었다. 이는 한국에서 처음으로 성공적으로 시도된 것이다. 연구결과에서 산전 태아 성 판별과 산후 태아의 성이 100% 일치하였으며, 임신 주기별 SRY 수치는 임신이 진행할수록 증가함을 확인할 수 있었다. 따라서 이러한 방법은 혈우병 A, 듀센형 근이영양증, 선천성 부신증식증과 연골 무형성증의 진단과 치료 상담에 이용할 수 있으며 50%에서 침습적인 방법을 줄일 수가 있다. 또한, RhD-음성 임신부 대상으로 태아의 성 판정과 RhD 태아 유전자형을 분석한 결과 RhD-음성 태아를 정확히 검출함으로써 앞으로 기존 양수천자 등 침습적 검사를 대체할 수 있을 것이다. 특히 이는 치료가 필요 없는 RhD-음성 태아에서 RhD-면역글로불린의 예방적 치료를 사전에 막을 수 있어, 임신부 건강을 보호하고 의료 비용을 줄일 수 있는 큰 장점을 가진다. 한국에서 최초로 시도된 임신부 혈장 내 cffDNA를 이용한 본 연구의 성공은 비침습적 산전진단 임상 적용의 새 길을 제시하였다. 따라서 이를 각 유전질환의 산전진단에 유용하게 활용하는 것은 태아와 임신부의 건강 증진과 의료비용 절약 등 개인과 국가에 많은 기여를 할 것으로 사료된다.