DOI QR코드

DOI QR Code

Noninvasive Prenatal Diagnosis using Cell-Free Fetal DNA in Maternal Plasma: Clinical Applications

  • Yang, Young-Ho (Division of Prenatal Molecular Genetics, Department of Laboratory Medicine, Seoul Medical Science Institute, Seoul Clinical Laboratories) ;
  • Han, Sung-Hee (Division of Prenatal Molecular Genetics, Department of Laboratory Medicine, Seoul Medical Science Institute, Seoul Clinical Laboratories) ;
  • Lee, Kyoung-Ryul (Division of Prenatal Molecular Genetics, Department of Laboratory Medicine, Seoul Medical Science Institute, Seoul Clinical Laboratories)
  • Received : 2011.05.30
  • Accepted : 2011.06.10
  • Published : 2011.03.01

Abstract

Owing to the risk of fetal loss associated with prenatal diagnostic procedures (amniocentesis, chorionic villus sampling), noninvasive prenatal diagnosis (NIPD) is ultimate goal of prenatal diagnosis. The discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma in 1997 has opened up new probabilities for NIPD by Dr. Lo et al. The last decade has seen great development in NIPD. Fetal sex and fetal RhD status determination by cffDNA analysis is already in clinical use in certain countries. For routine use, this test is limited by the amount of cell-free maternal DNA in blood sample, the lack of universal fetal markers, and appropriate reference materials. To improve the accuracy of detection of fetal specific sequences in maternal plasma, internal positive controls to confirm to presence of fetal DNA should be analyzed. We have developed strategies for noninvasive determination of fetal gender, and fetal RhD genotyping using cffDNA in maternal plasma, using real-time quantitative polymerase chain reaction (RT-PCR) including RASSF1A epigenetic fetal DNA marker (gender-independent) as internal positive controls, which is to be first successful study of this kind in Korea. In our study, accurate detection of fetal gender through gestational age, and fetal RhD genotyping in RhD-negative pregnant women was achieved. In this assay, we show that the assay is sensitive, easy, fast, and reliable. These developments improve the reliability of the applications of circulating fetal DNA when used in clinical practice to manage sex-linked disorders (e.g., hemophilia, Duchenne muscular dystrophy), congenital adrenal hyperplasia (CAH), RhD incompatibility, and the other noninvasive pregnant diagnostic tests on the coming soon. The study was the first successful case in Korea using cffDNA in maternal plasma, which has created a new avenue for clinical applications of NIPD.

현재 사용되고 있는 침습적 산전진단법(양수천자, 융모막샘플링)은 1-2%의 태아 손실이 초래되어, 비침습적 산전진단법이 산전진단의 궁극적인 목표로 대두되어 왔다. 1997년 Dr. Lo에 의해서 임신부 혈장 내에 세포 유리 태아 DNA (cffDNA)의 존재가 발견된 후 비침습적 산전진단의 새로운 가능성이 열렸으며, 과거 10년간 이에 대한 연구의 많은 진전을 보여주고 있다. 최근에 cffDNA를 이용한 Hemophilia A와 듀센형 근이영양증 등 반성 유전병(X-linked disorders) 진단에 필수적인 산전태아의 성 판정과 RhD-음성 임신부에서 태아의 RhD유전자 핵형 분석 등이 이미 외국에서 임상적으로 적용되고 있으나, 한국에서는 아직 실용화되지 않고 있다. CffDNA의 임상 사용에는 여전히 많은 제약점이 있으며, 이는 임신부 혈장 내 cffDNA 양에 비해 많은 양의 모태 DNA가 존재하고, 종래에 사용되었던 특이적인 Y염색체 유전자(Y-specific gene)는 남아 태아 임신 시에만 적용된다는 것에 기인한 다. 따라서 모든 태아에 적용할 수 있는 태아 성과 무관한 마커(sex-independent universal fetal marker as internal positive controls)가 요구되며, 이를 이용하여 정확한 태아 DNA를 검출할 수 있다. 본 연구진은 국내 처음으로 임신부 혈장 내에 cffDNA를 이용하여 SRY 유전자, RhD-exon 7, 태아 성과 무관한 DNA마커(universal fetal DNA marker)로써 RASSF1A 유전자를 실시간 중합효소연쇄반응(RT- PCR)을 사용하여 뛰어난 결과를 얻었다. 이는 한국에서 처음으로 성공적으로 시도된 것이다. 연구결과에서 산전 태아 성 판별과 산후 태아의 성이 100% 일치하였으며, 임신 주기별 SRY 수치는 임신이 진행할수록 증가함을 확인할 수 있었다. 따라서 이러한 방법은 혈우병 A, 듀센형 근이영양증, 선천성 부신증식증과 연골 무형성증의 진단과 치료 상담에 이용할 수 있으며 50%에서 침습적인 방법을 줄일 수가 있다. 또한, RhD-음성 임신부 대상으로 태아의 성 판정과 RhD 태아 유전자형을 분석한 결과 RhD-음성 태아를 정확히 검출함으로써 앞으로 기존 양수천자 등 침습적 검사를 대체할 수 있을 것이다. 특히 이는 치료가 필요 없는 RhD-음성 태아에서 RhD-면역글로불린의 예방적 치료를 사전에 막을 수 있어, 임신부 건강을 보호하고 의료 비용을 줄일 수 있는 큰 장점을 가진다. 한국에서 최초로 시도된 임신부 혈장 내 cffDNA를 이용한 본 연구의 성공은 비침습적 산전진단 임상 적용의 새 길을 제시하였다. 따라서 이를 각 유전질환의 산전진단에 유용하게 활용하는 것은 태아와 임신부의 건강 증진과 의료비용 절약 등 개인과 국가에 많은 기여를 할 것으로 사료된다.

Keywords

References

  1. Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997;350:485-7. https://doi.org/10.1016/S0140-6736(97)02174-0
  2. Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet 1996;14:264-8. https://doi.org/10.1038/ng1196-264
  3. Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 1990;87:3279-83. https://doi.org/10.1073/pnas.87.9.3279
  4. Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA 1979;76:1453-5. https://doi.org/10.1073/pnas.76.3.1453
  5. Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 2002;22:609-15. https://doi.org/10.1002/pd.347
  6. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 1996;2:1035-7. https://doi.org/10.1038/nm0996-1035
  7. Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996;2:1033-5. https://doi.org/10.1038/nm0996-1033
  8. Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol 2006;169:400-4. https://doi.org/10.2353/ajpath.2006.060161
  9. Alberry M, Maddocks D, Jones M, Abdel Hadi M, Abdel-Fattah S, Avent ND, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn 2007;27:415-8. https://doi.org/10.1002/pd.1700
  10. Lo YMD, Tein MSC, Lau TK, Haines CJ, Leung TN, Poon PMK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998;62:768-75. https://doi.org/10.1086/301800
  11. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996;93:705-8. https://doi.org/10.1073/pnas.93.2.705
  12. Lo YMD, Zhang J, Leung TN, Lau TK, Chang AMZ, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999;64:218-24. https://doi.org/10.1086/302205
  13. Chitty LS, van der Schoot CE, Hahn S, Avent ND. SAFE-The Special Noninvasive Advances in Fetal and Neonatal Evaluation Network: aims and achievements. Prenat Diagn 2008;28:83-8. https://doi.org/10.1002/pd.1929
  14. Legler TJ, Liu Z, Mavrou A, Finning K, Hromadnikova I, Galbiati S. Workshop report on the extraction of foetal DNA from maternal plasma. Prenat Diagn 2007;27:824-9. https://doi.org/10.1002/pd.1783
  15. Chiu RW, Lo YM. The biology and diagnostic applications of fetal DNA and RNA in maternal plasma. Curr Top Dev Biol 2004;61:81-111.
  16. Chiu RW, Poon LL, Lau TK, Leung TN, Wong EM, Lo YM. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 2001;47:1607-13.
  17. Chiu RWK, Lo YMD. Preanalytical issues for circulating DNA analysis: technical aspects, semantics and need for standardization. In: Bruns DE, Lo YMD, Wittwer CT, editors, Molecular testing in laboratory medicine: selections from clinical chemistry 1998-2001. Washington: AACC, 2002;309-10.
  18. Lee T, LeShane ES, Messerlian GM, Canick JA, Farina A, Heber WW, et al. Down syndrome and cell-free fetal DNA in archived maternal serum. Am J Obstet Gynecol 2002;187:1217-21. https://doi.org/10.1067/mob.2002.127462
  19. Angert RM, LeShane ES, Lo YM, Chan LY, Delli-Bovi LC, Bianchi DW. Fetal cell-free plasma DNA concentrations in maternal blood are stable 24 hours after collection: analysis of first- and third-trimester samples. Clin Chem 2003;49:195-8. https://doi.org/10.1373/49.1.195
  20. Zimmermann B, El-Sheikhah A, Nicolaides K, Holzgreve W, Hahn S. Optimized real-time quantitative PCR measurement of male fetal DNA in maternal plasma. Clin Chem 2005;51:1598-604. https://doi.org/10.1373/clinchem.2005.051235
  21. Avent ND, Chitty LS. Noninvasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 2006;26:598-603. https://doi.org/10.1002/pd.1493
  22. Traeger-Synodinos J. Real-time PCR for prenatal and preimplantation genetic diagnosis of monogenic diseases. Mol Aspects Med 2006;27:176-91. https://doi.org/10.1016/j.mam.2005.12.004
  23. Hyett JA, Gardener G, Stojilkovic-Mikic T, Finning KM, Martin PG, Rodeck CH, et al. Reduction in diagnostic and therapeutic interventions by Noninvasive determination of fetal sex in early pregnancy. Prenat Diagn 2005;25:1111-6. https://doi.org/10.1002/pd.1284
  24. Hromadnikova I, Houbova B, Hridelova D, Voslarova S, Kofer J, Komrska V, et al. Replicate real-time PCR testing of DNA in maternal plasma increases the sensitivity of noninvasive fetal sex determination. Prenat Diagn 2003;23:235-8. https://doi.org/10.1002/pd.556
  25. Bianchi DW, Avent ND, Costa JM, van der Schoot CE. Non-invasive prenatal diagnosis of fetal Rhesus D: ready for Prime(r) Time. Obstet Gynecol 2005;106:841-4. https://doi.org/10.1097/01.AOG.0000179477.59385.93
  26. Li Y, Wenzel F, Holzgreve W, Hahn S. Genotyping fetal paternally inherited SNPs by MALDI-TOF MS using cell-free fetal DNA in maternal plasma: influence of size fractionation. Electrophoresis 2006;27:3889-96. https://doi.org/10.1002/elps.200600084
  27. Dhallan R, Guo X, Emche S, Damewood M, Bayliss P, Cronin M, et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study. Lancet 2007;369:474-1. https://doi.org/10.1016/S0140-6736(07)60115-9
  28. Norbury G, Norbury CJ. Non-invasive prenatal diagnosis of single gene disorders: how close are we? Semin Fetal Neonatal Med 2008;13:76-83. https://doi.org/10.1016/j.siny.2007.12.008
  29. Chim SSC, Tong YK, Chiu RWK, Lau TK, Leung TN, Chan LYS, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA 2005;102:14753-8. https://doi.org/10.1073/pnas.0503335102
  30. Chan KCA, Ding C, Gerovassili A, Yeung SW, Chiu RWK, Leung TN, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem 2006;52:2211-8. https://doi.org/10.1373/clinchem.2006.074997
  31. Finning KM, Chitty LS. Non-invasive fetal sex determination: impact on clinical practice. Semin Fetal Neonatal Med 2008;13:69-75. https://doi.org/10.1016/j.siny.2007.12.007
  32. Chitty L, Mistry B, Hogg J, Meaney C, Thomasson L, Norbury G, et al. Prospective register of outcomes of free-fetal DNA testing (PROOF)-results of the first year's audit. BSHG News 2007;37:8-9.
  33. Chi C, Hyett JA, Finning KM, Lee CA, Kadir RA. Non-invasive first trimester determination of fetal gender: a new approach for prenatal diagnosis of haemophilia. BJOG 2006;113:239-42. https://doi.org/10.1111/j.1471-0528.2006.00813.x
  34. Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet 2005;365:2125-36. https://doi.org/10.1016/S0140-6736(05)66736-0
  35. Lajic S, Wedell A, Bui T, Ritzé n EM, Holst M. Longterm somatic follow-up of prenatally treated children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 1998;83:3872-80. https://doi.org/10.1210/jc.83.11.3872
  36. Rijnders RJ, van der Schoot CE, Bossers B, de Vroede MA, Christiaens GC. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol 2001;98:374-8. https://doi.org/10.1016/S0029-7844(01)01480-6
  37. Miller WL. Clinical review 54: Genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1994;78:241-6. https://doi.org/10.1210/jc.78.2.241
  38. Hill M, Finning K, Martin P, Hogg J, Meaney C, Norbury G, et al. Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin Genet 2011 [n Press].
  39. Portmann C, Ludlow J, Joyce A, Chan FY. Antecedents to and outcomes of Rh(D) immunization: mater mothers hospital, Brisbane, 1988-1995. Aust N Z J Obstet Gynaecol 1997;37:1-12. https://doi.org/10.1111/j.1479-828X.1997.tb02208.x
  40. Moise Jr KJ. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 2002;100:600-11. https://doi.org/10.1016/S0029-7844(02)02180-4
  41. Lo YM, Hjelm NM, Fidler C, Sargent IL, Murphy MF, Chamberlain PF, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 1998;339:1734-8. https://doi.org/10.1056/NEJM199812103392402
  42. Geifman-Holzman O, Grotegut CA, Gaughan JP. Diagnostic accuracy of noninvasive fetal Rh genotyping from maternal blood-a meta-analysis. Am J Obstet Gynecol 2006;195:1163-73. https://doi.org/10.1016/j.ajog.2006.07.033
  43. Aubin JT, Le Van Kim C, Mouro I, Colin Y, Bignozzi C, Brossard Y, et al. Specificity and sensitivity of RHD genotyping methods by PCR-based DNA amplification. Br J Haematol 1997;98:356-64. https://doi.org/10.1046/j.1365-2141.1997.2193040.x
  44. Rouillac-Le Sciellour C, Puillandre P, Gillot R, Baulard C, Mé tral S, et al. Large-scale pre-diagnosis study of fetal RHD genotyping by PCR on plasma DNA from RhD-negative pregnant women. Mol Diagn 2004;8:23-31. https://doi.org/10.1007/BF03260044
  45. The UK expert working group. Cell-free fetal nucleic acids for non-invasive prenatal diagnosis. UK: The foundation for genomics and population health (The PHG foundation), 2009;43.
  46. Hahn S, Holzgreve W. Prenatal diagnosis using fetal cells and cell-free fetal DNA in maternal blood: what is currently feasible? Clin Obstet Gynecol 2002;45:649-56. https://doi.org/10.1097/00003081-200209000-00008
  47. Hahn S, Chitty LS. Noninvasive prenatal diagnosis: current practice and future perspectives. Curr Opin Obstet Gynecol 2008;20:146-51. https://doi.org/10.1097/GCO.0b013e3282f73349
  48. Daniels G, Finning K, Martin P, Massey E. Noninvasive prenatal diagnosis of fetal blood group phenotypes: current practice and future prospects. Prenat Diagn 2009;29:101-7. https://doi.org/10.1002/pd.2172
  49. Yang YH. Noninvasive prenatal diagnosis using cellfree fetal nucleic acids in maternal plasma: Clinical applications. The 41st conference on Korean Society of Medical Genetics; 2010 Nov 18; Korea, Korea: Korean Society of Medical Genetics 2010;195-228.