• Title/Summary/Keyword: Discharge Capacities

Search Result 120, Processing Time 0.032 seconds

A Study on the Characteristics of Discharge Capacity for Horizontal Drains (수평배수재의 통수특성에 관한 연구)

  • 박정용;박정순;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.557-564
    • /
    • 2002
  • Discharge capacity test is carried out to find out influencing factors on discharge capacity of prefabricated horizontal drains to improve weak dredged clay. Four representative prefabricated horizontal drains are selected based on the size of drain as well as the shape of core. Test is carried out for 10 days at each three level of confining pressure for all drains. Effects of elapsed time, confining pressure, hydraulic gradient and strength of filter and core on discharge capacities are examined. It is found that discharge capacity of drain, which has deformable core or has a possibility of squeezing filter into core, decreases more with time due to its low strength. As confining pressure increases, discharge capacity decreases due to the squeezing of filter into core.

  • PDF

Influence of Electrolyte Composition on Electrochemical Performance of Li-S Cells

  • Kim, Tae Jeong;Jeong, Bo Ock;Koh, Jeong Yoon;Kim, Seok;Jung, Yongju
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1299-1304
    • /
    • 2014
  • The electrochemical performance of Li-S cells was investigated in various ternary electrolyte solutions composed of 1,2-dimethoxyethane (DME), tetra(ethylene glycol) dimethyl ether (TGM), and 1,3-dioxolane (DOX). The discharge capacity values and cycle data obtained at each composition were statistically treated with the Minitab program to obtain mixture contour plots, from which the optimal composition of the ternary solvent systems was predicted. The discharge capacities and capacity retention were quite dependent on the electrolyte composition. It was estimated from the contour plots of the capacity at 1.0 C that the discharge capacity sharply increased with a decrease in the TGM content. High capacities greater than 900 mAh/g at 1.0 C were expected for the electrolyte composition with a volume ratio of DME/TGM/DOX = 1/0/1. In contrast, it was predicted from the mixture contour plot of the capacity retention that the cycle performance would significantly increase with an increase in the DME content.

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Characterization of Acid-soluble Collagen from Alaska Pollock Surimi Processing By-products (Refiner Discharge)

  • Park, Chan-Ho;Lee, Jae-Hyoung;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2007
  • The study was carried out to examine on the refiner discharge from Alaska pollock as a collagen resource by characterizing biochemical and functional properties of collagen. The refiner discharge from Alaska pollock surimi manufacturing was a good resource for collagen extraction according to the results of total protein, heavy metal, volatile basic nitrogen, collagen content, amino acid composition, and thermal denaturation temperature (TDT). TDT of acid soluble collagen from refiner discharge showed $20.7^{\circ}C$, which was similar to that of collagen from Alaska pollock muscle and was higher than that of collagen from Alaska pollock skin. TDT of acid-soluble collagen from refiner discharge was, however, lower than those of skin collagens from warm fish and land animal. Acid-soluble collagen from refiner discharge of Alaska pollock could be used as a functional ingredient for food and industrial applications according to the results of water and oil absorption capacities, and emulsion properties. In addition, if the thermal stability of the acid-soluble collagens is improved, collagen from refiner discharge from Alaska pollock could be more effectively used.

Effects of Heat-treatments on Discharge Characteristics of TiFe1-xNix Alloy Electrodes for Ni/MH Secondary Battery (Ni/MH 2차전지용 TiFe1-xNix 합금전극의 방전특성에 대한 열처리의 영향)

  • Joung, Soon-dol;Joung, Sang-sik;Ahn, Hyo-jun;Kim, Ki-won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.135-141
    • /
    • 1998
  • The effects of heat-treatment on discharge characteristics of $TiFe_{1-x}Ni_x$ alloy were investigated. The content of Ni in alloy was varied from x = 0.1 to 0.6 by each 0.1 increment. Discharge capacity change of each alloy with C/D cycles was measured. With increasing Ni-content initial discharge capacity was increased. but at x = 0.6 it was deceased again. With increasing C/D cycles discharge capacity was rapidly decreased in the alloy of high Ni-content. In order to investigate the effects of heat-treatment on cycle life, $TiFe_{0.5}Ni_{0.5}$ alloy having maximum initial discharge capacity was heat-treated at various temperatures in the range of $700{\sim}900^{\circ}C$ and tested. The loss of initial discharge capacity was appeared at all temperatures. but cycle characteristics of the alloy was improved. The electrodes heat-treated for 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered as 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered asbeing due to increased electrode strength and small loss of porosity during heat-treatment. The electrode heat-treated for 1 hour at $900^{\circ}C$ showed poor discharge characteristics because of low porosity.

  • PDF

Characteristics of Electropolymerization and Electrochemical Properties of Polyaniline (Pblyaniline의 전해중합특성 및 전기화학적 특성)

  • Moon, Seong-In;Yun, Mun-Soo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.883-892
    • /
    • 1991
  • This paper presnets the characteristics of electropolymerization and electrochemicla propoerties of polyaniline(PAn). From the morphology study on the PAn surface, it seems that coagulation of the fibrils on the surface proceeds as the PAn grows, resulting in fibril clusters with new branches and more extensive voids. While PAn/Li cell is cycled at potential range between 2.9V and 3.7V in which the first strong reduction peak of 2.75V does not appear, its oxidation reduction capacities were increased up to about tenth cycle. Electricity efficiency of stable charge-discharge to deep discharge in PAn/Li cell was 42.9%. Average charge potential, avergae discharge potential, energy density, and charge-discharge energy efficiency of the PAn/Li cell were 3.4V, 3.25V, 132.9Wh/kg, and 95.6%, respectively.

The Electrochemical Characteristics of $LiCoO_2$Cathode Materials as a function of Polyaniline contents (Polyaniline을 첨가한 $LiCoO_2$정극활물질의 전기화학적 특성)

  • 임동규;임석범;김영호;김은옥;류광선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.667-670
    • /
    • 2000
  • The electrochemical characterization was conducted by the addition of chemically synthesized polyaniline on LiCoO$_2$electrode. From the results of XRD and SEM, the phase transition and microstructure were not found. Initial electrochemical characteristics of LiCoO$_2$electrode for lithium secondary battery were evaluated through the charge/discharge within the range of 4.3 V to 3.0 V versus Li/Li$^{+}$. Discharge capacity of LiCoO$_2$electrode without addition of Polyaniline were 160.21 mAh/g. But after addition of polyaniline, lower discharge capacities 25.7 mAh/g was found.d.

  • PDF

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

Discharge Capacity of Prefabricated Vertical Drain Confined In-Clay Under Long-Term Conditions (연직배수재 타설 후 장기간 경과된 지반의 통수성능)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.239-249
    • /
    • 2018
  • Typically, soft clay improvement is carried out using installation of PVD and surcharge method. According to circumstances, installed PVD has left for a long time due to the change in construction schedule. Therefore, for simulation of this kind of condition, discharge capacity tests were carried out under a series of temperature condition (30, 35, $40^{\circ}C$). The results indicated that under water confinement, the discharge capacities significantly reduced with elapsed time. And, the empirical equation by Miura and Chai (2000) was used for estimating the long-term in-clay discharge capacity. Based on the test results, it is recommended that in term of long-term discharge capacity, Miura and Chai's equation and reliability evaluation using discharge capacity tests under a series of temperature condition may be used.