Browse > Article
http://dx.doi.org/10.5012/jkcs.2016.60.5.299

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites  

Kim, Soo-Jin (Department of Chemistry, Keimyung University)
Hyun, Yura (Department of Chemistry, Keimyung University)
Lee, Chang-Seop (Department of Chemistry, Keimyung University)
Publication Information
Abstract
In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.
Keywords
Carbon nanomaterials; Silicon composites; Chemical vapor deposition; Lithium secondary batteries; Anode material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wakihara, M. Mater. Sci. Eng. R-Rep. 2001, 33, 109.   DOI
2 Yamauchi, Y.; Hino, T.; Ohzeki, K.; Kubota, Y.; Deyama, S. Carbon 2005, 43, 1334.   DOI
3 Kim, D. W. Prospectives of Industrial Chemistry 2004, 7, 1.
4 Ding, N.; Xu, J.; Yao, Y.; Wegner, G.; Lieberwirth, I.; Chen, C. J. Power Sources 2009, 192, 644.   DOI
5 Zhang, J.; Xie, Z.; Li, W.; Dong, S.; Qu, M. Carbon 2014, 74, 153.   DOI
6 Prosini, P. P.; Cento, C.; Alessandrini, F.; Gislon, P.; Mancini, A.; Rufoloni, A.; Rondino, F.; Santoni, A. Solid State Ion. 2014, 260, 49.   DOI
7 Jang, S. M.; Miyawaki, J.; Tsuji, M.; Mochida, I.; Yoon, S. H. Carbon 2009, 47, 3383.   DOI
8 Chouvin, J.; Branci, C.; Saradin, J.; Oliver-Fourcade, J.; Jumas, J. C.; Simon, B.; Biensan, Ph. J. Power Sources 1999, 81, 277.
9 Zhang, F.; Wang, K. X.; Li, G. D.; Chen, J. S. Electrochem. Commun. 2009, 11, 130.   DOI
10 Shi, D. Q.; Tu, J. P.; Yuan, Y. F.; Wu, H. M.; Li, Y.; Zhao, X. B. Electrochem. Commun. 2006, 8, 1610.   DOI
11 Brumbarov, J.; Kunze-Liebhäuser, J. J. Power Sources 2014, 258, 129.   DOI
12 Flandriois, S.; Simon, B. Carbon 1999, 37, 165.   DOI
13 Hanai, K.; Liu, Y.; Imanishi, N.; Hirano, A.; Matsumura, M.; Ichikawa, T. J. Power Sources 2005, 146, 156.   DOI
14 Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Carbon 2000, 38, 183.   DOI
15 Wang, H.; Ikeda, T.; Fukuda, K.; Yoshio, M. J. Power Sources 1999, 83, 141.   DOI
16 Villevieille, C.; Van Thournout, M.; Scoyer, J.; Tessier, C.; Olivier-Fourcade, J.; Jumas, J. C.; Monconduit, L. Electrochim. Acta 2010, 55, 7080.   DOI
17 Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003.   DOI
18 Qrins. Home Page. http://www.qrins.com (Mar 30th 2016 search).