• Title/Summary/Keyword: Disaster index

Search Result 397, Processing Time 0.023 seconds

A Study on the Heat Hazard Assessment of Building Wood (건축용 목재의 열 유해성 평가에 대한 연구)

  • Woo, Tae-Young;Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.6-14
    • /
    • 2018
  • This study was carried out with respect to the heat release rate (HRR) properties of building wood. Heat release characteristics were measured using a cone calorimeter (ISO 5660-1) with four kinds of wood. The time to ignition measured after the combustion in $25kW/m^2$ external heat flux was 35 to 55 s. Time to ignition of both lauan and red pine was marked with the most delayed value in each of 54 s, 55 s. The maximum heat release rate ($HRR_{peak}$) was $156.87{\sim}235.1kW/m^2$, and the risk of early fire was highest in spruce. Total heat release of red pine was obtained in the highest value with $114.2MJ/m^2$. The mean effective heat of combustion of Japanese cedar was 19.1 MJ/kg and the highest among the samples. Fire risk of wood by FPI was orderly increased from lauan ($0.2468s{\cdot}m^2/kW$), red pine ($0.2339s{\cdot}m^2/kW$), spruce ($0.2308s{\cdot}m^2/kW$) to Japanese cedar ($0.2231s{\cdot}m^2/kW$). Fire risk of wood by FGI get increased from lauan ($0.5088kW/m^2{\cdot}s$), red pine ($0.5111kW/m^2{\cdot}s$), Japanese cedar ($2.8522kW/m^2{\cdot}s$) to spruce ($3.0662kW/m^2{\cdot}s$). Therefore, the risk of fire on the heat release characteristics of woods were found that spruce and Japanese cedar showed the high value compared with the other specimens.

Longitudinal Change in Health Status after the Sewol Ferry Accident among Bereaved Parents (세월호 참사 후 희생자 부모의 건강상태 변화)

  • Yang, Sang Eun;Tae, Hye Jin;Hwang, Jihyun;Chae, Jeong-Ho
    • Anxiety and mood
    • /
    • v.14 no.1
    • /
    • pp.44-52
    • /
    • 2018
  • Objective : The present study had examined the psychiatric symptoms and physical health consequences for the bereaved parents of the high school students who died in the 2014 Sewol ferry accident. Methods : Forty bereaved parents participated in the study. The authors administered self-report questionnaires about the parents' health behaviors and psychiatric symptoms. The authors also conducted laboratory tests to assess the parents' physical health at 18 and 30 months after the accident. Univariate descriptive statistics were performed to report the prevalence and severity of psychiatric symptoms and health-related behaviors. Paired t-test and Mcnemar test were performed to compare the 18-and 30-month findings. Correlation analysis between psychiatric symptoms and laboratory findings were performed to find a relationship between the two variables. Results : At 30 months after the accident, most of the bereaved parents still appeared to suffer from complicated grief (97.5%), post traumatic stress disorder (80%), insomnia (77.5%) and severe depression (62.5%) based on the scores on the Inventory of Complicated Grief (ICG), the PTSD Check List-5 (PCL-5), the Insomnia Severity Index (ISI) and the Patient Health Questionnaire-9 (PHQ-9). One quarter of the bereaved parents reported high-risk drinking, and 47.5% reported increased drinking amount and frequency after the accident. In objective laboratory results, 55% of the bereaved parents were obese as defined by body mass index ${\geq}25$. The parents' mean low-density lipoprotein shows a significant increase over time (118.5 mg/dL at 18 months. vs. 132.5 mg/dL at 30 months. paired t-test t=-4.061, $$p{\leq_-}0.001$$). Total cholesterol and low-density lipoprotein at 30 months after the accident were in clinically borderline high range. In correlation analysis, triglyceride was positively correlated with ISI. Conclusion : The loss of children in the Sewol ferry accident, a disaster caused by human error, continued to have considerable impact on the victims' parents' mental and physical health 18 and 30 months after the accident. A longitudinal study following the parents' physical health would be necessary to investigate the long-term effects of this traumatic experience on physical health.

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Development and Application of a Coastal Disaster Resilience Measurement Model for Climate Change Adaptation: Focusing on Coastal Erosion Cases (기후변화 적응을 위한 연안 재해 회복탄력성 측정 모형의 개발 및 적용: 연안침식 사례를 중심으로)

  • Seung Won Kang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.713-723
    • /
    • 2023
  • Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.

Numerical analysis of geomorphic changes in rivers due to dam pulse discharge of Yeongju Dam (댐 펄스방류로 인한 하천의 지형변화 수치모의 분석(영주댐 중심으로))

  • Baek, Tae Hyoa;Jang, Chang-Laeb;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.871-881
    • /
    • 2023
  • This study investigates the geomorphic changes and Bed Relief Index of the river downstream of the Yeongju Dam by Nays2DH, a two-dimensional numerical model, in order to grasp the dynamics of the downstream river while applying various flow patterns such as pulse discharge. It shows that the geomorphic and the bed elevations changes are the largest under the condition of the normalized pulse discharge. The total change in the riverbed is 29.88 m for uniform flow, 27.46 m for normalized hydrograph, 29.63 m for pulse flow and 31.87 m for pulse flow with normalized hydrograph which result in the largest variation in scour and deposition. The Bed Relief Index (BRI) increases with time under conditions of uniform flow, pulse flow and pulse flow with normalized hydrograph. However, BRI increased rapidly until 30 hrs after the peak flow (14 hrs), but decreased from 56 hrs under the condition of normalized hydrograph. Therefore, the condition of normalized hydrograph gives greater dynamics than the condition of a single flood or constant flow, and the dynamics increase downstream than upstream, resulting in an effect on improving the environment of the river downstream of the dam.

Research on water quality and flow rate measurement by applying GPS electronic Floater standard experimental method when water environmental chemical accidents occur (수환경 화학사고 발생시 GPS 전자부자 표준실험법 적용을 통한 수질-수리 측정에 대한 연구)

  • Lee, Chang Hyun;Nam, Su Han;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.845-853
    • /
    • 2023
  • Recently, along with the increase in chemical accidents, the number of accidents-related disasters has been increasing continuously since 2012, and when looking at the hydrogen fluoride incident which is a representative example of domestic chemical incidents, there is insufficient technology applicable to the incident site. The result was that the damage spread. Therefore, in this paper, we will adapt the water pollution accident response system to a location-based approach, and introduce a measurement method for alternative index tracking using a GPS electronic floater of a location-based index measurement method for real-time response in the water environment when a chemical incident occurs. The research target area is Gumi City, which is the area where the hydrogen fluoride incident occurred, and Gamcheon is selected, and alternative tracking using GPS electronic floater is conducted in the corresponding target area through water quality and flow measurement. As a result, it is possible to measure water quality and flow at the same time in tracker experiments using GPS electronic floater based on the research results, it is believed that using GPS electronic floater will be of great help in disaster response systems for spill incidents in the river.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.