Browse > Article
http://dx.doi.org/10.14478/ace.2019.1022

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam  

Han, Jeong-In (Department of Chemical Engineering and Applied Chemisrty, Chungnam National University)
Kim, Min-Ji (Department of Chemical Engineering and Applied Chemisrty, Chungnam National University)
Song, Eun Ji (Department of Chemical Engineering and Applied Chemisrty, Chungnam National University)
Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemisrty, Chungnam National University)
In, Se-Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemisrty, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 371-378 More about this Journal
Abstract
Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.
Keywords
Flame retardant; Graphene nanoplatelet; Wood-based board; Limiting oxygen index;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 P. Monji, R. Jahanmardi, and M. Mehranpour, Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene, Carbon Lett., 27, 81-89 (2018).   DOI
2 L. Zuo, W. Fan, Y. Zhang, L. Zhang, W. Gao, Y. Huang, and T. Liu, Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance, Compos. Sci. Technol., 139, 57-63 (2017).   DOI
3 K. O. Chun and D. H. Rie, A study for the fire retardant-characteristics of expandable graphite composite materials, J. Korean Soc. Saf., 32, 28-33 (2017).
4 G. Huang, S. Wang, P. Song, C. Wu, S. Chen, and X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Compos. A, 59, 18-25 (2014).   DOI
5 H. J. Seo, J. M. Jo, W. Hwang, and M. C. Lee, Evaluation of fire characteristics for particle-board with exfoliated graphite nanoplatelets added, J. Korean Soc. Combust., 22, 1-8 (2017).
6 T. Kamae and L. T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fibermatrix interphase - Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. A, 43, 1569-1577 (2012).   DOI
7 B. Dittrich, K. Wartig, D. Hofmann, R. Mulhaupt, and B. Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stab., 98, 1495-1505 (2013).   DOI
8 H. J. Seo, S. M. Kim, D. W. Son, and S. B. Park, Review on enhancing flame retardant performance of building materials using carbon nanomaterials, J. Korean Soc. Living Environ. Syst., 20, 514-526 (2013).
9 D. G. Papageorgiou, Z. Terzopoulou, A. Fina, F. Cuttica, G. Z. Papageorgiou, D. N. Bikiaris, K. Chrissafis, R. J. Young, and I. A. Kinloch, Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler, Compos. Sci. Technol., 156, 95-102 (2018).   DOI
10 K. M. Lee, S. E. Lee, and Y. S. Lee, Effect of fluorination on thermal and mechanical properties of carbon nanotube and graphene nanoplatelet reinforced epoxy composites, Polymer(Korea), 40, 553-560 (2016).   DOI
11 C. I. Idumah, A. Hassan, and S. Bourbigot, Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites, J. Anal. Appl. Pyrolysis, 123, 65-72 (2017).   DOI
12 F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites, J. Mater. Sci., 50, 1082-1093 (2015).   DOI
13 H. Quan, B. Zhang, Q. Zhao, R. K. K. Yuen, and R. K. Y. Li, Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites, Compos. A, 40, 1506-1513 (2009).   DOI
14 X. Wu, L. Wang, C. Wu, J. Yu, L. Xie, G. Wang, and P. Jiang, Influence of char residues on flammability of EVA/EG, EVA/NG and EVA/GO composites, Polym. Degrad. Stab., 97, 54-63 (2012).   DOI
15 G. Huang, J. Gao, X. Wang, H. Liang, and C. Ge, How can graphene reduce the flammability of polymer nanocomposites?, Mater. Lett., 66, 187-189 (2012).   DOI
16 R. Hashim, O. Sulaiman, R. N. Kumar, P. F. Tamyez, R. J. Murphy, and Z. Ali, Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard, J. Mater. Process. Technol., 209, 635-640 (2009).   DOI
17 L. Ye, Q. Wu, and B. Qu, Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites, Polym. Degrad. Stab., 94, 751-756 (2009).   DOI
18 H. S. Yang, D. J. Kim, and H. J. Kim, Rice straw-wood particle composite for sound absorbing wooden construction materials, Bioresour. Technol., 86, 117-121 (2003).   DOI
19 H. J. Park and H. Kim, A study on charring rate of wood exposed to a constant incident radiation heat flux, Fire Sci. Eng., 18, 86-92 (2004).
20 Y. Wu, C. Yao, Y. Hu, S. Yang, Y. Qing, and Q. Wu, Flame retardancy and thermal degradation behavior of red gum wood treated with hydrate magnesium chloride, J. Ind. Eng. Chem., 20, 3536-3542 (2014).   DOI
21 A. D. Cavdar, Effect of various wood preservatives on limiting oxygen index levels of fir wood, Measurement, 50, 279-284 (2014).   DOI
22 X. Wang, E. N. Kalali, J.-T. Wan, and D.-Y. Wang, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci., 69, 22-46 (2017).   DOI
23 B. W. Shin, Y. H. Song, D. H. Rie, and K. S. Chung, A study on combustion characteristics of wood-plastic composites, Fire Sci. Eng., 24, 120-125 (2010).
24 M. J. Yu, T. S. Kwon, Y. H. Bae, M. C. Vu, B. C. Lee, and S. R. Kim, Effects of carbon-based nanofillers on the structure and property of phenolic foam, Polymer(Korea), 42, 133-139 (2018).   DOI
25 M. Liu, Y. Wang, Y. Wu, Z. He, and H. Wan, "Greener" adhesives composed of urea-formaldehyde resin and cottonseed meal for wood-based composites, J. Clean. Prod., 187, 361-371 (2018).   DOI
26 J. C. Lee, J. S. Seo, and S. B. Kim, Study on flame retardancy and thermal resistance properties of phenolic foam and polyurethane foam, J. Korean Inst. Gas, 17, 35-41 (2013).   DOI
27 S. Ran, C. Chen, Z. Guo, and Z. Fang, Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene, J. Appl. Polym. Sci., 131, 40520 (2014).
28 E. Jin and Y. J. Chung, Fire risk of wood treated with boron compounds by combustion test, Fire Sci. Eng., 32, 19-26 (2018).   DOI
29 H. J. Seo, N. K. Kim, J. M. Jo, and M. C. Lee, Analysis on the flame-retardant performance and hazards in gas products for water-soluble flame-retardant-chemicals treated woods, J. Korean Soc. Hazard Mitig., 17, 173-179 (2017).
30 H. J. Seo, N. K. Kim, J. M. Jo, and M. C. Lee, A study on the development of fire-retardant performance for wood and wood-based materials in buildings, J. Korean Soc. Hazard Mitig., 18, 185-192 (2018).
31 H. J. Park, A study on the combustion characteristics of phenol foam, Fire Sci. Eng., 24, 122-127 (2010).
32 Y. Tang, D. Y. Wang, X. K. Jing, X. G. Ge, B. Yang, and Y. Z. Wang, A formaldehyde-free flame retardant wood particleboard system based on two-component polyurethane adhesive, J. Appl. Polym. Sci., 108, 1216-1222 (2008).   DOI
33 H. Cui and G. Du, Development of a novel polyvinyl acetate type emulsion curing agent for urea formaldehyde resin, Wood Sci. Technol., 47, 105-119 (2013).   DOI
34 S. Jin, K. Li, J. Li, and H. Chen, A low-cost, formaldehyde-free and high flame retardancy wood adhesive from inorganic adhesives: Properties and performance, Polymers, 9, 513 (2017).   DOI
35 L. Zhang, S. Liang, and Z. Chen, Influence of particle size and addition of recycling phenolic foam on mechanical and flame retardant properties of wood-phenolic composites, Constr. Build. Mater., 168, 1-10 (2018).   DOI
36 B. Dittrich, K. A. Wartig, D. Hofmann, R. Mulhaupt, and B. Schartel, Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites, Polym. Adv. Technol., 24, 916-926 (2013).   DOI
37 F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, and Ph. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Mater. Sci. Eng. R Rep., 63, 100-125 (2009).   DOI
38 A. Dasari, Z. Z. Yu, G. P. Cai, and Y. W. Mai, Recent developments in the fire retardancy of polymeric materials, Prog. Polym. Sci., 38, 1357-1387 (2013).   DOI
39 B. Dittrich, K. Wartig, D. Hofmann, R. Mulhaupt, and B. Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stab., 98, 1495-1505 (2013).   DOI
40 V. K. R. Kodur and T. Z. Harmathy, Properties of building materials, in: O.J. DiNenno (ed.), The SFPE Handbook of Fire Protection Engineering, 3rd ed., Chapter 1-10, NFPA, MA, USA (2002).