DOI QR코드

DOI QR Code

Numerical analysis of geomorphic changes in rivers due to dam pulse discharge of Yeongju Dam

댐 펄스방류로 인한 하천의 지형변화 수치모의 분석(영주댐 중심으로)

  • Baek, Tae Hyoa (Department of Civil Engineering, Korea National University of Transportation) ;
  • Jang, Chang-Laeb (Department of Civil Engineering, Korea National University of Transportation) ;
  • Lee, Kyung Su (National Disaster Management Instiute, Ministry of the Interior and Safety)
  • 백태효 (한국교통대학교 토목공학과) ;
  • 장창래 (국립한국교통대학교 건설환경도시교통공학부 사회기반공학전공) ;
  • 이경수 (행정안전부 국립재난안전연구원)
  • Received : 2023.02.15
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

This study investigates the geomorphic changes and Bed Relief Index of the river downstream of the Yeongju Dam by Nays2DH, a two-dimensional numerical model, in order to grasp the dynamics of the downstream river while applying various flow patterns such as pulse discharge. It shows that the geomorphic and the bed elevations changes are the largest under the condition of the normalized pulse discharge. The total change in the riverbed is 29.88 m for uniform flow, 27.46 m for normalized hydrograph, 29.63 m for pulse flow and 31.87 m for pulse flow with normalized hydrograph which result in the largest variation in scour and deposition. The Bed Relief Index (BRI) increases with time under conditions of uniform flow, pulse flow and pulse flow with normalized hydrograph. However, BRI increased rapidly until 30 hrs after the peak flow (14 hrs), but decreased from 56 hrs under the condition of normalized hydrograph. Therefore, the condition of normalized hydrograph gives greater dynamics than the condition of a single flood or constant flow, and the dynamics increase downstream than upstream, resulting in an effect on improving the environment of the river downstream of the dam.

본 연구에서는 영주댐 하류 하천을 대상으로 2차원 수치모형인 Nays2DH를 적용하여 펄스방류 등 다양한 유량 조건에서 하류 하천의 역동성을 파악하기 위해 하도의 지형변화 특성 및 하상기복지수를 분석하였다. 수치모의에 적용되는 유량패턴은 등류 흐름, 정규화된 단일홍수, 펄스방류, 그리고 정규화된 펄스방류 등 4개의 유형이다. 수치모의 결과, 정규화를 적용한 펄스방류 조건일 때 하상고 및 하도의 변화가 가장 큰 것으로 나타났다. 총 하상 변화량은 등류 흐름 조건일 때 29.88 m, 정규화된 단일 홍수 조건일 때 27.46 m, 펄스 방류일 때 29.63 m 그리고 정규화된 펄스 방류일 때 31.87 m로이며, 이 조건에서 세굴과 퇴적의 변동 폭이 가장 크게 나타났다. 하상기복지수(BRI)를 분석한 결과, 등류 조건, 펄스방류, 그리고 정규화된 펄스방류 조건은 시간이 지날수록 BRI가 증가한다. 그러나, 정규화된 단일홍수에서는 첨두유량(14 hrs) 이후 30 hrs 까지 BRI가 급격하게 증가하지만, 그 이후부터는 증가 폭이 점점 감소하고, 56 hrs부터는 감소하였다. 수치모의가 끝날 때(72 hrs) BRI는 등류일 때 2.95, 정규화된 단일홍수일 때 3.31, 펄스방류일 때 3.34, 정규화된 펄스방류일 때 3.78이다. 따라서, 정규화된 펄스방류가 단일홍수나 등류보다 더 큰 역동성을 줄 수 있고, 하류로 갈수록 역동성이 커지면서 댐 하류하천의 환경개선에 효과를 가져올 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응관리 혁신기술개발사업의 지원을 받아 연구되었습니다(2022003610004).

References

  1. Ashida, K., and Michiue, M. (1972). "Study on hydraulic resistance and bed-load transport rate in alluvial streams." Transactions, Japan Society of Civil Engineering, JSCE, Vol. 1972, No. 206, pp. 59-64. https://doi.org/10.2208/jscej1969.1972.206_59
  2. Baek, T.H. (2020). Numerical analysis of effect of flow pluses on geomorphic changes downstream of dam. Master Thesis, Korea National University of Transportation.
  3. Brandt, S.A. (2000). "Classification of geomorphological effects downstream of dams." Catena, Vol. 40, No. 4, pp. 375-401. https://doi.org/10.1016/S0341-8162(00)00093-X
  4. Bunte, K. (2004). Gravel mitigation and augmentation below hydroelectric dams: A geomorphological perspective. Report to the Stream Systems Technology Center, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, U.S.
  5. Chai, T., and Draxler, R.R. (2014). "Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature." Geoscientific Model Development, Vol. 7, No. 3, pp. 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  6. Cui, Y., Parker, G., Lisle, T.E., Gott, J., Hansler-Ball, M.E., Pizzuto, J.E., Allmendinger, N., and Reed, J.M. (2003). "Sediment pulses in mountain rivers: 1. experiments." Water Resources Research, Vol. 39, No. 9. 1239. doi: 10.1029/2002WR001803.
  7. Engelund, F. (1974). "Bed Characteristics in alluvial channel bends." Journal of the Hydraulics Division, ASCE, Vol. 100, No. 11, pp. 1631-1648. https://doi.org/10.1061/JYCEAJ.0004109
  8. Galay, V.J. (1983). "Causes of river bed degradation." Water Resouroes Research, Vol. 19, No. 5, pp. 1057-1090. https://doi.org/10.1029/WR019i005p01057
  9. Gupta, H.V., and Kling, H. (2011). "On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics." Water Resources Research, Vol. 47, No. 10, W10601. doi: 10.1029/2011WR010962.
  10. Hoey, T.B., and Sutherland, A.J. (1991). "Channel morphology and bedload pulses in braided rivers: A laboratory study." Earth Surface Processes and Landforms, Vol. 16, pp. 447-462. https://doi.org/10.1002/esp.3290160506
  11. Jang, C.-L. (2013). "Experimental analysis of the morphological changes of the vegetated channels." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 9, pp. 909-919. https://doi.org/10.3741/JKWRA.2013.46.9.909
  12. Jang, C-L., and Shimizu, Y. (2010). "Numerical simulation of sand bars downstream of Andong Dam." Journal of Civil and Environmental Engineering Research, KSCE, Vol. 30, No. 4B, pp. 379-388.
  13. Jang, C-L., and Woo, H.S. (2009). "Analysis of bed material changes by flushing flow from Daecheong Dam." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 10, pp. 845-855. https://doi.org/10.3741/JKWRA.2009.42.10.845
  14. Kang, K.-H., Jang, C.-L., Lee, G.H., and Jung, K. (2016). "Numerica zl analysis of the morphological changes by sediment supply at the downstream channel of Youngju Dam." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 8, pp. 693-705. doi: 10.3741/JKWRA.2016.49.8.693
  15. Kondolf, G.M. (1997). "Hungry water: Effects of dams and gravel mining on river channels." Environmental Management, Vol. 21, No. 4, pp. 533-552. https://doi.org/10.1007/s002679900048
  16. Korea Water Resources Association (KWRA) (2009). River design standard commentary.
  17. Lee, T.H., and Kim, S.H. (2021). "Analysis of changes in cross section and flow rate due to vegetation establishment in Naeseong Stream." Journal of Korea Water Resources Association, KWRA, Vol. 54, No. 3, pp. 203-215. https://doi.org/10.3741/JKWRA.2021.54.3.203
  18. Ministry of Landm Infrastructure and Transport (MOLIT) (2012). Basic river plan for the midstream area of Naeseongcheon Stream.
  19. National Water Commission (NWC) (2009). Pulsed flows: A riview of environmental costs and benefits and best practice. Canberra, Australia.
  20. Page, K., Read, A., Frazier, P., and Mount, N. (2005). "The effect of altered flow regime on the frequency and duration of bankfull discharge: Murrumbidgee River, Australia." River Research and Applications, Vol. 21, No. 5, pp. 567-578. https://doi.org/10.1002/rra.828
  21. Pitlick, J., and Wilcock, P. (2001). "Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers." Geomorphic Processes and Riverine Habitat, Vol. 4, pp. 185-198. https://doi.org/10.1029/WS004p0185
  22. Shin, Y.H., and Julien, P.Y. (2011). "Effect of flow pulses on degradation downstream of Hapcheon Dam, South Korea." Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 1, pp. 100-111. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000287
  23. Watanabe, A., Fukuoka, S., Yasutake, Y., and Kawaguchi, H. (2001). "Method for arranging vegetation griffons at bends for control of bed variation." Collection of Papers on River Engineering, Vol. 7, pp. 285-290.
  24. Williams, G.P., and Wolman, M.G. (1984). Downstream effects of dams on Alluvial Rivers. United States Geological Survey Professional Paper, 1286, U.S. Government Printing Office Washington, D.C., U.S.