• Title/Summary/Keyword: Disaster Management System

Search Result 1,354, Processing Time 0.03 seconds

Feasibility of Economic Analysis of Riverfront Facility Based on Mobile Big Data (통신 빅데이터 기반 하천이용시설 사용성능 경제성평가기법개발)

  • Choi, Byeong Jun;Noh, Hee-Ji;Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2021
  • Riverfront facilities are river space facilities used by citizens for the rest and convenience. Recently, although the importance of efficient maintenance of riverfront facilities is increasing, damaging facilities cases are increasing due to frequent floods. Currently, the inspections and diagnosis of river space facilities are limited to the main flood control facilities. And the standards for the maintenance and management of the riverfront facilities are insufficient. Utilization survey, which is the standard for managing river space facilities, is also inefficient in terms of manpower consumption and economic feasibility. This study uses mobile big data to classify river usage and conducts a survey for usability of river facilities to derive economic evaluation for usage performance. In the future, if economical method system that considers safety, usability, and durability is conducted and demanding analysis for each convenience facility is evaluated, it is expected that the efficient maintenance of riverfront facilities is perfomed better and the use of rivers by citizens will further increase.

Threshold Condition for Exclusion of Riprap into Bypass Pipe (저층수 배출관에 유입된 사석의 배제 한계조건)

  • Jeong, Seokil;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.57-66
    • /
    • 2019
  • One of the most serious problems with concrete small dams or barriers installed in small/median rivers is the deposit of sediments, especially, in Korea. An effective way to discharge such sediments to downstream is to construct a bypass pipe under the river bed. However, efficiency may become lowered if ripraps are entered into the bypass pipe. Therefore, in this study, we derived the threshold condition for the exclusion of ripraps from the bypass pipe using 3D numerical analysis. Upstream flow of the small dam was assumed to be stationary, and the energy concept was applied to the control volume containing the bypass pipe and its periphery. As a result, when the ratio of the water level difference between upstream and downstream to the diameter of the riprap was approximately equal to 1.2, the threshold condition for exclusion of the stones or riprap from the bypass pipe was affirmatively determined. If the characteristics of the adsorptive sediment adversely affecting the river environment in the future would be taken into account, results from this study are expected to put to practical use in the management of concrete small dam with bypass pipe system.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Proposal of Performance Evaluation Methodology for Hydropower Reservoirs with Resilience Index (회복탄력성을 고려한 발전용댐의 성능평가 방법론 제안)

  • Kim, Dong Hyun;Yoo, Hyung Ju;Shin, Hong-Joon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2022
  • Recently, water resources and energy policies such as integrated water management and carbon neutrality are changing rapidly. There is an opinion that the value of hydropower reservoirs related to these policies should be re-evaluated. In the past, they have contributed to flood control in addition to electricity generation, such as operating at a limited water level during the flood season, but loss of power generation is inevitable with this operation. Therefore, this study introduced the concept of resilience to the hydropower generation system to minimize the power loss. A framework for evaluating the power generation performance of them was presented by defining the maximization of electricity sales as performance. Based on the current procedure of multiple operation plan, a scenario was established and simulation was performed using HEC-5. As a result of applying to the framework, it was confirmed that the power generation performance according to each scenario was evaluated as an important factor. And it was confirmed that the performance of flood control and water use could also be evaluated.

A Study on Creation of Secure Storage Area and Access Control to Protect Data from Unspecified Threats (불특정 위협으로부터 데이터를 보호하기 위한 보안 저장 영역의 생성 및 접근 제어에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.897-903
    • /
    • 2021
  • Purpose: Recently, ransomware damage that encrypts victim's data through hacking and demands money in exchange for releasing it is increasing domestically and internationally. Accordingly, research and development on various response technologies and solutions are in progress. Method: A secure storage area and a general storage area were created in the same virtual environment, and the sample data was saved by registering the access process. In order to check whether the stored sample data is infringed, the ransomware sample was executed and the hash function of the sample data was checked to see if it was infringed. The access control performance checked whether the sample data was accessed through the same name and storage location as the registered access process. Result: As a result of the experiment, the sample data in the secure storage area maintained data integrity from ransomware and unauthorized processes. Conclusion: Through this study, the creation of a secure storage area and the whitelist-based access control method are evaluated as suitable as a method to protect important data, and it is possible to provide a more secure computing environment through future technology scalability and convergence with existing solutions.

A Study on the Improvement of the System to Reduce Damage on Ammonia Chemical Accident (암모니아 화학사고 피해를 줄이기 위한 제도개선 연구)

  • Lee, Joo Chan;Jeon, Byeong Han;Kim, Hyun Sub
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.306-313
    • /
    • 2022
  • Purpose: The purpose of this study is suggested to improve upon current existing methods of ammonia chemical accident prevention and damage reduction. Method: Ammonia is one of the most common toxic substances that causes frequent chemical accidents. And it was selected as leakage materials according to statistics on chemical accident. Based on actual cases of chemical accidents, CARIS modeling was used to compare the damage impact range of Ammonia and HCl and Cl. Also, find out problems with the current systems. Result: As a result of find out the range of accident influence that spreads to the surroundings when an ammonia chemical accident, it was longer than the range of influence of hydrochloric acid and shorter than that of chlorine. In addition, it was found that when chemical accident by ammonia, hydrochloric acid, or chlorine, there are apartments and schools, which can have an effect. Conclusion: It is decided that it is necessary to determine whether or not chemical accident prevention management plans and statistical investigations are submitted for workplaces dealing with ammonia, and detailed guidelines and reviews are necessary. In addition, it is judged that it is necessary to establish a DB for ammonia handling plants, and it is considered that information sharing and joint inspection among related organizations should be pursued.

Development of Automated Statistical Analysis Tool using Measurement Data in Cable-Supported Bridges (특수교 계측 데이터 자동 통계 분석 툴 개발)

  • Kim, Jaehwan;Park, Sangki;Jung, Kyu-San;Seo, Dong-Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.79-88
    • /
    • 2022
  • Cable-supported bridges, as important large infrastructures, require a long-term and systematic maintenance strategy. In particular, various methods have been proposed to secure safety for the bridges, such as installing various types of sensor on members in the bridges, and setting management thresholds. It is evidently necessary to propose a strategic plan to efficiently manage increasing number of cable-supported bridges and data collected from a number of sensors. This study aims to develop an analysis tool that can automatically remove abnormal signals and calculate statistical results for the purpose of efficiently analyzing a wide range of data collected from a long span bridge measurement system. To develop the tool, basic information such as the types and quantity of sensors installed in long span bridges and signal characteristics of the collected data were analyzed. Thereafter, the Humpel filtering method was used to determine the presence or absence of an abnormality in the signal and then filtered. The statistical results with filtered data were shown. Finally, one cable-stayed bridge and one suspension bridge currently in use were chosen as the target bridges to verify the performance of the developed tool. Signal processing and statistical analysis with the tool were performed. The results are similar to the results reported in the existing work.

A Study on Falling Detection of Workers in the Underground Utility Tunnel using Dual Deep Learning Techniques (이중 딥러닝 기법을 활용한 지하공동구 작업자의 쓰러짐 검출 연구)

  • Jeongsoo Kim;Sangmi Park;Changhee Hong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.498-509
    • /
    • 2023
  • Purpose: This paper proposes a method detecting the falling of a maintenance worker in the underground utility tunnel, by applying deep learning techniques using CCTV video, and evaluates the applicability of the proposed method to the worker monitoring of the utility tunnel. Method: Each rule was designed to detect the falling of a maintenance worker by using the inference results from pre-trained YOLOv5 and OpenPose models, respectively. The rules were then integrally applied to detect worker falls within the utility tunnel. Result: Although the worker presence and falling were detected by the proposed model, the inference results were dependent on both the distance between the worker and CCTV and the falling direction of the worker. Additionally, the falling detection system using YOLOv5 shows superior performance, due to its lower dependence on distance and fall direction, compared to the OpenPose-based. Consequently, results from the fall detection using the integrated dual deep learning model were dependent on the YOLOv5 detection performance. Conclusion: The proposed hybrid model shows detecting an abnormal worker in the utility tunnel but the improvement of the model was meaningless compared to the single model based YOLOv5 due to severe differences in detection performance between each deep learning model

Perception Survey for Demonstration Service using Drones (드론을 활용한 실증 서비스에 대한 인식 조사)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • The purpose of this study is to discover a drone utilization model tailored to local characteristics, propose directions for building a drone demonstration city based on demand surveys for drone activation, and suggest ways to utilize and support a drone application system. First, according to the survey results, there was a high understanding of and necessity for drone demonstration projects, particularly in addressing urban issues, which were deemed to have a significant impact. Second, based on the analysis of priorities and short- and long-term approaches, disaster-related tasks were evaluated as a priority, requiring an approach through medium- to long-term strategies. Third, it was noted that budgetary considerations emerged as the most critical issue during project implementation. Practitioners and experts expressed willingness to actively introduce drone-based technologies into their work when budget and technology were ready. Budgetary constraints were identified as the most significant obstacle to proper implementation, emphasizing the need for resolution. Fourth, the necessity of demand surveys during project development was identified in certain areas. Demand surveys were deemed essential for drone-based demonstration city construction, and a survey indicated that public leadership in this regard was also necessary. Fifth, concerning approaches in specific areas, the field of safety and disaster management was highlighted as the most crucial for application.

Performance Estimation of Hexagonal Rockfall Protection Net by Numerical Analysis (수치해석을 이용한 육각 낙석방지망의 성능 평가)

  • Oh, Sewook;Park, Soobeom;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.53-59
    • /
    • 2014
  • It has been generally recognized that the conventional rockfall protection nets have several problems to actual field application in the aspect of shock absorption, lack of pullout bearing capacities, and net damages. Because of the recognition, authors have tried to develop a new rockfall protection system consisted of shock absorption parts and hexagonal net configuration. In the previous research by the authors, the performance of the newly developed rockfall protection system has been investigated through the laboratory tests and the full-scale testing. In this study, subsequently, numerical analysis program is organized to make a confirmation of the structural stability and performance. For the correct design procedure of the hexagonal net system, it is essential to understand the various mechanical behavior of the entire system. It is also important to be reproduced the systematic characteristics of the system acquired by laboratory and full-scale testing by numerical analysis in order to carry out the numerical experiment to understand various mechanical behavior of the system. As a conclusion, the hexagonal net has better performance in mechanical and physical behavior compared with that of the rectangular net. Furthermore, due to the hexagonal net shows a good performance in aspect of the load distribution, it gives a good alternative in long-term management of the rockfall protection net.