• Title/Summary/Keyword: Disaster, Pohang Earthquake

Search Result 36, Processing Time 0.027 seconds

Relationship of Radon-222 and Chemical Composition of Groundwater as a Precursor of Earthquake (지진 전조인자로서 지하수내 라돈 및 화학성분의 상관성 연구)

  • Jeong, Chan Ho;Park, Jun Sik;Lee, Yong Cheon;Lee, Yu Jin;Yang, Jae Ha;Kim, Young Suk;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.313-324
    • /
    • 2018
  • In order to study the earthquake precursor in the Korean peninsula, long-term variations of chemical composition, radon-222, and water level were measured at depths (-60 m, -100 m) in the groundwater monitoring wells of the Daejeon and the Cheongwon area. The pH and electrical conductivity of groundwater in the monitoring wells showed some relationship with the Pohang earthquake. The ${HCO_3}^-$ and $Cl^-$ concentration of groundwater in the Daejeon and $Mg^{2+}$, $Cl^-$ and ${NO_3}^-$ in the Cheongwon showed some relation with the Pohang earthquake. However, it is not distinct to find the relationship between their variation and earthquake. The radon-222 concentration in Daejeon was observed a significant increase from a minimum of 162 Bq/L prior to the earthquake to 573 Bq/L right after the earthquake, that indicating a strong correlation with earthquakes. In the case of groundwater levels, it can not find some correlation between earthquakes and continuous decreasing trend in the monitoring wells of Daejeon and Cheongwon area. However, water level of a national groundwater observation well within 10 kilometers of Pohang epicenter was recorded as an abrupt drop right before the earthquake. Conclusively, although the location of monitoring wells is more than 180 kilometers apart from the epicenter of the Pohang earthquake, the radon gas in groundwater can be considered as a reliable candidate among earthquake precursors. The pH, electrical conductivity, ${HCO_3}^-$ and $Cl^-$ among hydrochemicals showed some correlation with earthquake should be monitored during a longer term to recognize distinctly as a precursor of earthquake.

A Comparative Analysis of Korea-Japan Seismic Recovery System (한일 지진 복구체계의 비교 분석)

  • Lee, JunBeom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.458-471
    • /
    • 2020
  • Purpose: In Korea, the frequency and frequency of earthquakes are increasing every year. Therefore, the purpose of this study was to compare and analyze the characteristics and examples of earthquakes in Korea and Japan, and to propose improvements to the earthquake prevention policy in Korea. Method: In this study, we investigate and evaluate Japan's response in two cases: the Kobe earthquake and the East Japan earthquake. After surveying and evaluating the nation's countermeasures in the two events, Gyeongju and Pohang, they were compared. Result: When comparing recovery systems in Korea and Japan, there were significant differences in plans for restoration of road transport networks, regional disaster prevention plans, and the introduction of Conclusion: considering the physical distance between Korea's earthquake-prone areas and the capital, the government should quickly come up with countermeasures to ensure that immediate earthquake response in the region is enhanced through the detailed establishment of the Functional Continuity Plan (COOP), and that administrative functions will function normally in the event of a disaster through the introduction of the administrative BCP concept.

Improving Information Service for Earthquake Using Rapid ShakeMap

  • Hwang, Jinsang;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.95-101
    • /
    • 2021
  • In this study, we present how to improve the current seismic disaster information service by utilizing Shake, which can express the effects of earthquakes in the form of isolines. Using ShakeMap software provided by the U.S. Geological Survey, an automated rapid ShakeMap generation system was implemented, and based on this, an earthquake disaster information service improvement model was presented to identify earthquake risk in the form of intensity or peak ground acceleration. In order to verify the feasibility and effectiveness of the improved model, the seismic disaster information service app. was developed and operated on a trial basis in Pohang, Gyeongsangbuk-do. As a result of the operation, it was found that more detailed seismic risk information could be provided by providing information using rapid ShakeMap to induce users' safety behavior more effectively.

A Study on Evaluation Criteria for Infrastructure Importance regarding Earthquake (공공시설물 지진대응을 위한 중요도 평가기준에 관한 연구)

  • Park, Jae-woo;Kim, Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.317-327
    • /
    • 2018
  • The perception of earthquake in Korea has changed due to the earthquake that occurred in Gyeongju and Pohang, and the earthquake has become an important factor in infrastructure management. Damage to infrastructures in the event of an earthquake is extensive. In particular, damage to infrastructures that perform public function used to spread to the whole area. From the point of view of earthquake disaster prevention, it is very important for the public to define what infrastructures are important management targets and to prepare a countermeasure. In this study, we propose a method to evaluate the importance of infrastructure to effectively manage infrastructures for earthquakes. For this purpose, important factors for the railway bridges, power generation and electric power facilities, and apartment complexes are suggested. AHP analysis is conducted to suggest priorities. In addition, the evaluation criteria for infrastructure importance are presented.

Situating the Anthropocene: The Social Construction of the Pohang 'Triggered' Earthquake (인류세 맥락화하기: 포항 '촉발지진'의 사회적 구성)

  • KIM, Kiheung
    • Journal of Science and Technology Studies
    • /
    • v.19 no.3
    • /
    • pp.51-117
    • /
    • 2019
  • On 15th November 2017, the coastal city of Pohang, located in the Southeastern part of South Korea was shaken by a magnitude 5.4 earthquake. The earthquake displaced more than 1,700 residents and caused more than $ 300 million dollars of economic loss. It was the second most damaging earthquake in the history of Korea. Soon after the earthquake, a group of scientists raised a possible link between the first Enhanced Geothermal System (EGS) project and the earthquake. At the same time, another group of scientists put forward a different hypothesis of the causation of the earthquake claiming that it was caused by the geological movements that were initiated by the Great Tohoku Earthquake in 2011. Since then, there were scientific debates between the two different groups of scientists. The scientific debate on the causation of the earthquake has been concluded temporarily by the Research Investigatory Committee on the Pohang Earthquake in 2019. The research committee concluded that the earthquake was caused by the Pohang EGS system: this means that the earthquake can be defined not as a natural earthquake, but as an artificially triggered earthquake. This article is to examine the Pohang earthquake can be defined as an Anthropocenic event. The newly suggested concept, the Anthropocene is a relatively novel term to classify the earthly strata and their relationship to geological time. The current geological period should be defined by human activities and man-made earthly environment. Although the term is basically related to geological classification, the Anthropocene has been widely debated amongst humanist and social science scholars. The current disastrous situation of our planet also implies with the Anthropocene. This paper is to discuss how to understand anthropogenic events. In particular, the paper pays attention to two different scholarly positions on the Anthropocene: Isabelle Stenger's Gaia theory and Barbara Herrnstein Smith's relativist theory. The former focuses on the earthly inevitable catastrophe of Anthropocene while the latter suggests to situate and contextualise anthropogenic events. On the basis of the theoretical positions, the article is to analyse how the Pohang earthquake can be located and situated.

Natech Risk Assessment of Chemical Facilities in the Event of Earthquake in Korea using RAPID-N (RAPID-N을 이용한 국내 지진 발생 시 화학시설 Natech 위험성 평가)

  • Park, Jaehyuk;Yeon, Eungjin;Lee, Hak Tae;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.111-118
    • /
    • 2019
  • Accidents occurring due to natural disasters in chemical process facilities where technologies are concentrated can cause secondary damage. The concept of the relationship between natural disasters and highly intensive technologies has evolved into the Natech (Natural Hazards Triggered Technological Disaster) research. Currently, the number of earthquakes is increasing all over the Korean peninsula. To assess the risk of Natech when an earthquake has occurred in South Korea, the Rapid Natech Risk Assessment Tool (RAPID-N) developed by the European Commission's Joint Research Center (EC JRC) was used in the present study. The RAPID-N can be used for Natech risk assessment based on mapping and can be utilized for sufficient preparation for reduction of the effects of Natech accidents. A total of 261 chemical facilities actually existing in Pohang were initially analyzed to select eight facilities and the Pohang earthquake that occurred in 2017 was implemented in the RAPID-N utilizing the shake map. High risk areas were selected through Natech risk assessments for the selected eight work places and countermeasures for the areas were suggested. High risk areas exist depending on the location, since the damage influence ranges could be overlapped and each chemical facility has an independent probability of Natech. Therefore, studies on Natech emergency plans and emergency evacuation routes should be actively conducted considering such high risk areas. The present study was conducted to demonstrate the feasibility of Natech risk assessment in South Korea through the RAPID-N. These findings can be used as a reference material to lay a foundation for Natech risk assessment and related policies in South Korea.

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes (2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.557-566
    • /
    • 2018
  • Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.

A Study on Risk Assessment Method for Earthquake-Induced Landslides (지진에 의한 산사태 위험도 평가방안에 관한 연구)

  • Seo, Junpyo;Eu, Song;Lee, Kihwan;Lee, Changwoo;Woo, Choongshik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.694-709
    • /
    • 2021
  • Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake-induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.

A Study on the Development of Remodeling (plan) by Deriving Temporary House Improvements (임시주거용 조립주택 개선사항 도출을 통한 리모델링(안) 개발 연구)

  • Lee, Ji-Hyang;Son, Myung-Chan;Kwon, Jin-Suk;Park, Sang-Hyun;Won, Jin-Yung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.301-311
    • /
    • 2019
  • Purpose and Method: In this study, a questionnaire interview survey was conducted for the victims living in the temporary house by the Pohang earthquake, and improvements were derived. Results: As a result, major improvements in terms of facilities are as follows. First, in order to expand the toilet and cooking space, the existing inner gate and the wall are removed and the width of the toilet is expanded. Minimize the inconvenience by adding a cooking table as wide as the extended toilet. Second, a separate sleep compartment is set up to secure storage space in a limited area. And the storage closet is installed below and used as a storage space. At this time, the size of the sleeping space is set to double bed size. Third, curtains and blinds are installed on both windows to secure privacy, thereby protecting privacy and psychological stability. Conclusion: If the remodeling of the temporary house proposed in this study is utilized and applied, it is possible to provide a better living environment. In addition, it is expected that it will be possible to improve the efficiency of space and overcome existing spatial limitations by minimizing inconveniences reflecting the needs of the victims.

Modelsfor Disaster Prevention Education and Training and Scenario for Training on Volcanic Ash Fall (재난재해 교육, 대응훈련 모델과 화산재 대비 훈련 시나리오)

  • Chang, Eunmi;Park, Yongjae;Park, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.97-113
    • /
    • 2018
  • Low-frequency geological natural disaster events such as Pohang earthquake have been occurred. As a results, there's a growing recognition on the importance of education and training for low frequency geological disasters in Korea. In spite of many years of scientific researches on volcanic disaster prevention and preparedness on Baekdusan volcano, the results do not provide the proper scenario for the training for volcanic ash event. Fall 3D volcanic ash diffusion model was run based on wind field data for the last five year, assuming Aso Mountain's explosion with volcanic explosion index 5 for seventy two hours. The management criteria values for proper actions in the previous studies were applied to make a scenario for thirteen groups of the disaster response teams such as train transportation, water supply, electrical facilities and human health. The models on the relationship between education and training for disaster prevention and response were suggested to fulfill the scientific and practical training at local level.