• Title/Summary/Keyword: Dirichlet boundary condition

Search Result 134, Processing Time 0.03 seconds

MULTIPLICITY AND NONLINEARITY IN THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • We investigate the existence of solutions u(x, t) for perturbations of the elliptic system with Dirichlet boundary condition $$\array {L{\xi}+{\mu}g({\xi}+2{\eta})=f\;in\;{\Omega}}\\{L{\eta}+{\nu}g({\xi}+2{\eta})=f\;in\;{\Omega}}$$ (0.1) where $g(u)=Bu^+-Au^-$, $u^+=max\{u,\;0\}$, $u^-=max\{-u,\;0\}$, ${\mu}$, ${\nu}$ are nonzero constants and the nonlinearity $({\mu}+2{\nu})g(u)$ crosses the eigenvalues of the elliptic operator L.

  • PDF

AN APPLICATION OF CRITICAL POINT THEORY TO THE NONLINEAR HYPERBOLIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.149-165
    • /
    • 2007
  • We investigate the existence of multiple nontrivial solutions $u(x,t)$ for a perturbation $b[({\xi}-{\eta}+2)^+-2]$ of the hyperbolic system with Dirichlet boundary condition $$(0.1)\;L{\xi}={\mu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},\\L{\eta}={\nu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},$$, where $u^+$=max{u,o}, ${\mu}$, ${\nu}$ are nonzero constants. Here L is the wave operator in $\mathbb{R}^2$ and the nonlinearity $({\mu}-{\nu})[({\xi}-{\eta}+2)^+-2]$ crosses the eigenvalues of the wave operator.

  • PDF

IMPROVED MULTIPLICITY RESULTS FOR FULLY NONLINEAR PARABOLIC SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.283-291
    • /
    • 2009
  • We investigate the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the parabolic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\xi}_t=-L{\xi}+g_1(3{\xi}+{\eta})-s{\phi}_1-h_1(x,t)\;in\;{\Omega}{\times}(0,\;2{\pi}),\\{\eta}_t=-L{\eta}+g_2(3{\xi}+{\eta})-s{\phi}_1-h_2(x,t)\;in\;{\Omega}{\times}(0,\;2{\pi}).\end{array}$$ We show the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the parabolic system when the nonlinearity $g^{\prime}_1,\;g^{\prime}_2$ are bounded and $3g^{\prime}_1(-{\infty})+g^{\prime}_2(-{\infty})<{\lambda}_1,\;{\lambda}_n<3g^{\prime}_1(+{\infty})+g^{\prime}_2(+{\infty})<{\lambda}_{n+1}$.

  • PDF

UNIQUENESS RESULTS FOR THE NONLINEAR HYPERBOLIC SYSTEM WITH JUMPING NONLINEARITY

  • Jung, Tack-Sung;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.723-732
    • /
    • 2007
  • We investigate the existence of solutions u(x, t) for a perturbation b[$(\xi+\eta+1)^+-1$] of the hyperbolic system with Dirichlet boundary condition (0.1) = $L\xi-{\mu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$, $L\eta={\nu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$ where $u^+$ = max{u,0}, ${\mu},\nu$ are nonzero constants. Here $\xi,\eta$ are periodic functions.

CLASSIFICATION OF SINGULAR SOLUTIONS FOR THE POISSON PROBLEM WITH VARIOUS BOUNDARY CONDITIONS

  • Kim, Seok-Chan;Woo, Gyung-Soo;Kong, Soo-Ryoun
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.579-590
    • /
    • 2009
  • The precise form of singular functions, singular function representation and the extraction form for the stress intensity factor play an important role in the singular function methods to deal with the domain singularities for the Poisson problems with most common boundary conditions, e.q. Dirichlet or Mixed boundary condition [2, 4]. In this paper we give an elementary step to get the singular functions of the solution for Poisson problem with Neumann boundary condition or Robin boundary condition. We also give singular function representation and the extraction form for the stress intensity with a result showing the number of singular functions depending on the boundary conditions.

THE EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD

  • Kim, Bang-Ok;Kim, Kwon-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.19-23
    • /
    • 1995
  • We will estimate the lower bound of the first nonzero Neumann and Dirichlet eigenvalue of Laplacian equation on compact Riemannian manifold M with boundary. In case that the boundary of M has positive second fundamental form elements, Ly-Yau[3] gave the lower bound of the first nonzero neumann eigenvalue $\eta_1$. In case that the second fundamental form elements of $\partial$M is bounded below by negative constant, Roger Chen[4] investigated the lower bound of $\eta_1$. In [1], [2], we obtained the lower bound of the first nonzero Neumann eigenvalue is estimated under the condtion that the second fundamental form elements of boundary is bounded below by zero. Moreover, I realize that "the interior rolling $\varepsilon$ - ball condition" is not necessary when the first Dirichlet eigenvalue was estimated in [1].ed in [1].

  • PDF

A NONLINEAR BEAM EQUATION WITH NONLINEARITY CROSSING AN EIGENVALUE

  • Park, Q-Heung;Nam, Hye-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.609-622
    • /
    • 1997
  • We investigate the existence of solutions of the nonlinear beam equation under the Dirichlet boundary condition on the interval $-\frac{2}{\pi}, \frac{2}{\pi}$ and periodic condition on the varible t, $Lu + bu^+ -au^- = f(x, t)$, when the jumping nonlinearity crosses the first positive eigenvalue.

  • PDF