THE EXISTENCE OF SOLUTION OF SEMILINEAR ELLIPTIC EQUATION

KWON WOOK KIM

ABSTRACT. This paper is concerned with the existence of positive solution of a semilinear elliptic equation with homogeneous Dirichlet boundary condition.

1. Introduction

This paper is concerned with the existence of positive solution of semilinear elliptic equation with homogeneous Dirichlet boundary condition

$$(P) \qquad \begin{cases} -\triangle u = f(x, u) & \text{in } \Omega \\ u \ge 0, & u \not\equiv 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset R^N$ is a bounded domain with smooth boundary and the function $f(x,u) \colon \Omega \times [0,\infty) \to R$ satisfies the following assumption:

(H1) For almost all $x \in \Omega$, the function $u \mapsto f(x, u)$ is continuous on $[0, \infty)$ and for each $\delta > 0$, there is a constant $C_{\delta} \geq 0$ such that

$$f(x,u) \ge -C_{\delta}u$$
 for almost all $x \in \Omega$, for all $u \in [0,\delta]$.

(H2) For each $u \geq 0$, the function $x \mapsto f(x, u)$ belongs to $L^{\infty}(\Omega)$.

We introduce the measurable function

$$a_0(x) = \lim_{u \downarrow 0} \frac{f(x,u)}{u}$$

Received May 4, 1998. Revised October 30, 1998.

1991 Mathematics Subject Classification: 35J60.

Key words and phrases: semilinear elliptic equation, weak solution.

$$a_{\infty}(x) = \lim_{u \uparrow \infty} rac{f(x,u)}{u}$$

so that
$$-\infty < a_0(x) \le +\infty$$
, and $-\infty \le a_\infty(x) < +\infty$.

Previously, Brezis and Oswald [3] treated the case of sublinear elliptic equation. More precisely, in [3] a solution of (P) was shown to exist at most one solution by assuming (H1), (H2). Moreover, if a solution of (P) exists and the function $u \longmapsto f(x,u)/u$ is decreasing on $(0,\infty)$, then the facts that

$$\lambda_1(-\triangle -a_0(x)) < 0$$

(2)
$$\lambda_1(-\triangle -a_{\infty}(x)) > 0$$

are known. By the strong maximum principle,we know that u is a positive solution on Ω . Here $\lambda_1(-\Delta - a(x))$ denotes the first eigenvalue of $-\Delta - a(x)$ with zero Dirichlet condition on $\partial\Omega$. In the present paper, we shall generalize H. Brezis and L. Oswald's result [3] under the critical growth condition on f(x, u). In [3], the condition(H3) is assumed only for p=2.

(H3) There is a constant C > 0 such that

$$f(x,u) \le C(u^{p-1}+1)$$

for almost all $x \in \Omega$, for all $u \ge 0$ where $2 \le p < \frac{2N}{N-2}$ if $N \ge 3$ and $2 \le p < \infty$ if N = 2.

Instead of $a_0(x)$ above, we replace it by

(3)
$$a_0(x) = \lim_{u \downarrow 0} \inf \frac{f(x, u)}{u}.$$

Let us assume that

$$\lim_{u \uparrow \infty} \sup \frac{2F(x,u)}{u^2} \le \lambda_1(-\triangle)$$

uniformly for almost all $x \in \Omega$ where $F(x,u) = \int_0^u f(x,t) dt$ and

(4)
$$\lim_{u \uparrow \infty} \sup \frac{2F(x, u)}{u^2} < \lambda_1(-\triangle)$$

on a subset of Ω of positive measure (abbr., $\lambda_1(-\triangle) = \lambda_1$).

From (H1), there is a constant C such that $a_0(x) \geq -C$ and from (4), we may assume that there is a function $\alpha(x) \in L^{\infty}(\Omega)$ such that

(5)
$$\lim_{u \uparrow \infty} \sup \frac{2F(x, u)}{u^2} \le \alpha(x) \le \lambda_1$$

uniformly for almost all $x \in \Omega$.

For example, if $f(x, u) = e^{-|x|u^2}u^{p-1}$, since

$$\begin{split} F(x,u) &= \int_0^u e^{-|x|t^2} t^{p-1} dt \\ &= \frac{1}{2} \int_0^{u^2} e^{-|x|s} s^{\frac{p}{2}-1} ds \\ &= \frac{-1}{2|x|} \frac{u^{p-2}}{e^{|x|u^2}} + O\left(\frac{u^{p-4}}{|x|^2 e^{|x|u^2}}\right), \end{split}$$

then

$$\lim_{u\uparrow\infty}\frac{2F(x,u)}{u^2}=0\leq \lambda_1(-\triangle).$$

Thus we can take the functions of this type $f(x,u) = e^{-|x|u^2}u^{p-1}$ satisfying both conditions (H_3) and (4). This function also satisfies both conditions (H_1) and (H_2) .

Our main result is the following:

MAIN THEOREM. Under the conditions (H_1) , (H_2) , (H_3) , (1) and (4), there exists a weak solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ of (P).

We will prove the theorem using following Lemma.

LEMMA. Assume that the conditions (4) and (5) hold. Then there is $\delta > 0$ such that, for every $u \in H_0^1(\Omega)$,

$$\psi(u) = rac{1}{2} \int_{\Omega} \left[|igtriangledown u|^2 - lpha(x) u^2
ight] \geq \delta \int_{\Omega} |igtriangledown u|^2.$$

PROOF. It follows from Poincaré's inequality that

$$\psi(u) \geq rac{1}{2} \int_{\Omega} [|igtriangleup u|^2 - \lambda_1 u^2] \geq 0.$$

If $\psi(u) = 0$, then $\int |\nabla u|^2 = \int \lambda_1 u^2$ and thus

$$0=\psi(u)=rac{1}{2}\int_{\Omega}(\lambda_1-lpha(x))u^2.$$

Since $\lambda_1 > \alpha(x)$ on a subset of Ω of positive measure, u = 0 on a subset of Ω of positive measure. By the unique continuation property, we obtain $u \equiv 0$. Assume now that the conclusion is false. Then there is a sequence (u_n) in $H_0^1(\Omega)$ such that

$$\int_{\Omega} |\bigtriangledown u_n|^2 = 1, \ u_n \rightharpoonup u \ \text{ in } H^1_0(\Omega), \ u_n \rightarrow u \ \text{ in } \ L^2(\Omega)$$

and $0 \le \psi(u_n) \to 0$ as $n \to \infty$. We obtain

$$\lim_{n o \infty} \inf \int_{\Omega} |igtriangledown |^2 \geq \int_{\Omega} |igtriangledown u|^2$$

and

$$\int_{\Omega}|\bigtriangledown u_n|^2\to \int_{\Omega}\alpha(x)u^2.$$

Hence $0 \le \psi(u) \le 0$, i.e., $\psi(u) = 0$. Thus $u \equiv 0$. But $1 = \int_{\Omega} |\nabla u_n|^2 \to 0$ which is impossible.

2. Proof of main theorem

We consider the functional $E: H^1_0(\Omega) \to R \cup \{\infty\}$ defined by

$$E(u) = rac{1}{2} \int_{\Omega} |igtriangledown u|^2 - \int_{\Omega} F(x,u) \; ext{ for all } \; u \in H^1_0(\Omega),$$

where $F(x,u) = \int_0^u f(x,t)dt$ and f(x,u) is extended to be f(x,0) for $u \leq 0$. Note that E(u) is well-defined, since $F(x,u) \leq C(\frac{1}{p}|u|^p + |u|)$ for all $x \in \Omega$, for all $u \in R$. We claim that the following:

- (8) E is coercive on $H_0^1(\Omega)$,
- (9) E is lower semicontinuous for the weak $H_0^1(\Omega)$ topology,
- (10) There is some $\phi \in H_0^1(\Omega)$ such that $E(\phi) < 0$.

PROOF OF (8). From the conditions (H3) and (5), there is a function $\beta(x) \in L^1(\Omega)$ such that

$$F(x,u) \leq (\alpha(x) + \lambda_1 \delta) \frac{u^2}{2} + \beta(x).$$

Thus

$$\begin{split} E(u) &= \int_{\Omega} \left[\frac{1}{2} |\bigtriangledown u|^2 - F(x, u) \right] \\ &\geq \int_{\Omega} \left[\frac{1}{2} |\bigtriangledown u|^2 - \alpha(x) \frac{u^2}{2} - \frac{\lambda_1 \delta}{2} u^2 - \beta(x) \right] \\ &= \psi(u) - \int_{\Omega} \frac{\lambda_1 \delta}{2} u^2 - \int_{\Omega} \beta(x) \\ &\geq \delta \int_{\Omega} |\bigtriangledown u|^2 - \frac{\lambda_1 \delta}{2} \int_{\Omega} u^2 - \int_{\Omega} \beta(x) \\ &= \delta \int_{\Omega} \left[|\bigtriangledown u|^2 - \frac{\lambda_1}{2} u^2 \right] - \int_{\Omega} \beta(x) \\ &\geq \delta \int_{\Omega} \left[|\bigtriangledown u|^2 - \frac{|\bigtriangledown u|^2}{2} \right] - \int_{\Omega} \beta(x) \\ &= \frac{\delta}{2} \int_{\Omega} |\bigtriangledown u|^2 - \int_{\Omega} \beta(x). \end{split}$$

Thus E(u) is coercive on $H_0^1(\Omega)$ under the norm $||u||_{H_0^1} = [\int_{\Omega} |\nabla u|^2]^{1/2}$.

PROOF OF (9). Let $u_n \to u$ converge weakly to u in $H_0^1(\Omega)$. By Sobolev's imbedding theorem, passing to a subsequence if necessary, we may suppose that $u_n \to u$ in $L^p(\Omega)$, $u_n \to u(x)$ for almost all $x \in \Omega$ and $|u_n(x)| \leq h(x)$ for some $h \in L^p(\Omega)$. Then it follows from (H3) that

$$|F(x, u_n(x))| \le C(h(x)^p + h(x)).$$

Since the right side of the above inequality is in $L^1(\Omega)$, we have, by Lebesque dominated convergence theorem,

$$\lim_{n\to\infty}\int_{\Omega}F(x,u_n)=\int_{\Omega}F(x,u).$$

Thus

$$\lim_{n \to \infty} \inf E(u_n) = \lim_{n \to \infty} \inf \left(\int_{\Omega} \frac{1}{2} |\nabla u_n|^2 - F(x, u_n) \right)$$

$$\geq \lim_{n \to \infty} \inf \int_{\Omega} \frac{1}{2} |\nabla u_n|^2 - \lim_{n \to \infty} \int_{\Omega} F(x, u_n)$$

$$\geq \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u) = E(u).$$

PROOF OF (10). We fix any $\phi \in H_0^1(\Omega)$ satisfying

$$\int_{\Omega}|\bigtriangledown\phi|^2-\int_{[\phi\neq0]}a_0\phi^2<0.$$

Such ϕ always exists by assumption (1). We may always assume that $\phi > 0$ and that $\phi \in L^{\infty}(\Omega)$. Otherwise, we replace ϕ by $|\phi|$ and truncate ϕ . We note that

$$\lim_{u\downarrow 0}\inf\frac{F(x,u)}{u^2}\geq \frac{1}{2}a_0(x)$$

and thus

$$\lim_{\varepsilon \downarrow 0}\inf \frac{F(x,\varepsilon\phi)}{\varepsilon^2} \geq \frac{1}{2}a_0(x)\phi^2(x) \ \text{ for almost all } \ x \in [\phi \neq 0].$$

On the other hand, we deduce from the condition (H1) that

$$\frac{F(x,\varepsilon\phi)}{\varepsilon^2} \ge -C\phi^2 \ge -C.$$

Therefore, by Fatou's lemma, it follows

$$\lim_{\varepsilon \downarrow 0} \inf \int_{[\phi \neq 0]} \frac{F(x, \varepsilon \phi)}{\varepsilon^2} \geq \frac{1}{2} \int_{[\phi \neq 0]} a_0 \phi^2,$$

from which

$$\lim_{arepsilon\downarrow 0}\inf\int_{\Omega}rac{F(x,arepsilon\phi)}{arepsilon^2}\geqrac{1}{2}\int_{[\phi
eq0]}a_0\phi^2.$$

Hence we obtain

$$rac{1}{2}\int_{\Omega}|igtriangledown\phi|^2-\int_{\Omega}rac{F(x,arepsilon\phi)}{arepsilon^2}<0 \ \ ext{for} \ \ arepsilon>0 \ \ ext{small enough}.$$

CONCLUSION OF PROOF. Using (8), (9) and (10) we see that $\inf_{u \in H_0^1} E(u)$ is achieved by some $u \not\equiv 0$. We may always assume that $u \geq 0$. Otherwise we replace u by u^+ and use the fact that $F(x,u) \leq F(x,u^+)$. Here the last inequality holds since $F(x,u) = f(x,0)u \leq 0$ for $u \leq 0$. Then we know that E(u) is of class C^1 . Thus there exists a weak solution u of (P). If we knew in addition that $u \in L^{\infty}(\Omega)$, we would conclude that u is a solution of (P). To show that $u \in L^{\infty}(\Omega)$, we introduce a truncated problem. We set, for each integer k > 0,

$$\left\{ \begin{array}{ll} f^k(x,u) = \max\{f(x,u), -ku\} & \text{if } u \geq 0 \\ f^k(x,u) = f^k(x,0) = f(x,0) & \text{if } u \leq 0 \end{array} \right.$$

and

$$a_0^k(x) = \lim_{u \downarrow 0} \inf \frac{f^k(x, u)}{u}.$$

Assumptions (H1), (H2) and (H3) hold for $f^k(x,u)$. Since $f \leq f^k$ and $a_0(x) \leq a_0^k(x), \ \lambda_1(-\triangle - a_0^k(x)) \leq \lambda_1(-\triangle - a_0(x)) < 0$ holds. From

this, the assumption (1) holds for $a_0^k(x)$. Moreover, the assumption (4) holds for $f^k(x, u)$ provided that k is large enough. Set

$$E_k(u) = rac{1}{2} \int_{\Omega} |igtriangleup u|^2 - \int_{\Omega} F^k(x,u)$$

for all $u \in H_0^1(\Omega)$. It follows from the previous argument that $\inf_{u \in H_0^1} E_k(u)$ is achieved by some u_k . Moreover, u_k satisfies

$$\begin{cases} -\triangle u_k = f^k(x, u_k) & \text{in } \Omega \\ u_k \ge 0, u_k \not\equiv 0 \text{ in } \Omega \\ u_k = 0 \text{ on } \partial \Omega. \end{cases}$$

Then there exist constants D_k , C_k such that

$$-D_k(|u|+1) \le f^k(x,u) \le C_k(|u|^{p-1}+1).$$

Therefore $E_k(u)$ is of class C^1 and by a standard bootstrap argument, $u_k \in L^{\infty}(\Omega)$. Set $v = \min\{u, u_k\}$. We claim that

$$E(v) \leq E(u)$$
.

This shows that $u \in L^{\infty}(\Omega)$. Indeed, we have

$$\frac{1}{2}\int_{\Omega}|\bigtriangledown u_k|^2-\int_{\Omega}F^k(x,u_k)\leq \frac{1}{2}\int_{\Omega}|\bigtriangledown \phi|^2-\int_{\Omega}F^k(x,\phi)$$

for all $\phi \in H_0^1(\Omega)$. Choosing $\phi = \max\{u, u_k\}$, we obtain

$$\frac{1}{2} \int_{[u_{k} \geq u]} |\nabla u_{k}|^{2} - \int_{[u_{k} \geq u]} F^{k}(x, u_{k})
+ \frac{1}{2} \int_{[u_{k} < u]} |\nabla u_{k}|^{2} - \int_{[u_{k} < u]} F^{k}(x, u_{k})
\leq \frac{1}{2} \int_{[u_{k} \geq u]} |\nabla u_{k}|^{2} - \int_{[u_{k} \geq u]} F^{k}(x, u_{k})
+ \frac{1}{2} \int_{[u_{k} < u]} |\nabla u|^{2} - \int_{[u_{k} < u]} F^{k}(x, u).$$

Thus we find

(11)
$$\frac{1}{2} \int_{[u_{k} < u]} |\nabla u_{k}|^{2} - \int_{[u_{k} < u]} F^{k}(x, u_{k}) \\ \leq \frac{1}{2} \int_{[u_{k} < u]} |\nabla u|^{2} - \int_{[u_{k} < u]} F^{k}(x, u).$$

On the other hand, we have

$$E(v) - E(u) = \int_{[u_k < u]} \left\{ \frac{1}{2} | \nabla u_k|^2 - \frac{1}{2} | \nabla u|^2 - F(x, u_k) + F(x, u) \right\}$$

$$\leq \int_{[u_k < u]} F^k(x, u_k) - F^k(x, u) - F(x, u_k) + F(x, u)$$

$$= \int_{[u_k < u]} \left[\int_{u_k}^u f(x, t) - f^k(x, t) \right] dt \leq 0.$$

Thus $E(v) \leq E(u)$. From this, we know v = u, $u \leq u_k$. Therefore $u \in L^{\infty}(\Omega)$.

References

- [1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- [2] R. Benguria, H. Brezis and E. Lieb, The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules, Communs Math. Phys. 79 (1981), 167-180.
- [3] H. Brezis and L. Oswald, Remarks on sublinear elliptic equation, Nonlinear Anal. T. M. A. 10 (1986), 55-64.
- [4] S. Fućik, Nonlinear Differential Equations, Elsevier, Czechoslovak, 1980.
- [5] D. Figueiredo and J. Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic problem, Math. Ann. 281 (1988), 589-610.
- [6] P. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review. 24 (1982), 441-467.
- [7] C. Miranda, Partial differential equation of elliptic type, Springer-Verlag, 1970.
- [8] S. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Doklady 6 (1965), 1408-1411.
- P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,
 J. Diff. Eqns. 51 (1984), 121-150.

[10] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12(1984), 191-202.

Department of Mathematics Education Sunchon University Sunchon 540-742, Korea *E-mail*: kkwook@sunchon.sunchon.ac.kr