• Title/Summary/Keyword: Directional Spectrum

Search Result 118, Processing Time 0.025 seconds

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

Simulation of a Non-Directional Wave Spectrum Analysis with Welch's Method

  • Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.146-149
    • /
    • 2008
  • Simulation and signal conditioning on the time domain surface elevation records are conducted to verify the proposed Welch's method in non-directional ocean wave spectrum analysis. These spectrum data are further conditioned to provide wave characteristic that better describe the sea states. Comparison of significant wave height and zero crossing period between the proposed method and a reference toolkit are presented.

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Behavior of Regular Waves and Multi-Directional Random Waves Passing a Breakwater (방파제를 통과하는 규칙파와 다방향 불규칙파랑의 거동)

  • Park, Sang-Il;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-442
    • /
    • 2008
  • Diffraction of multi-directional random waves passing semi-infinite breakwater is investigated by using analytic solution derived by Penny and Prices(1952). An irregylarity of period and incident angle of waves and regular periods for regular waves are considered in addition by expanding from the past study which used only monochromatic wave in general. The Bretschneider-Mitsuyasu frequency spectrum and Mitsuyasu directional spectrum are used for incident waves. And diffraction of multi-directional random waves is reappeared by decomposing numerical results of several monochromatic waves which have variable period and incident angle. Analytic solution on the diffraction of regular waves and multi-directional random waves calculated in this study.

  • PDF

A Comparative Study on the Methods Estimating Wave Directional Spectrum (파향스펙트럼 추정법의 비교 연구)

  • 오병철;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.119-127
    • /
    • 1990
  • Wave directional spectrum estimation methods for irregular waves were considered in this study. Until now, the Longuet-Higgins Method (LHM) initiated by Longuet-Higgins et al. (1963) has been widely used, but resolutions of the estimation were found to be low. Kobune's Maximum Entropy Method (MEM) for the estimation of wave directional spectrum, bas-ed on the entropy Principle showed higher resolutions comparing with the LHM . If the wave directional spectrum is of Delta functions, the MEM is exact in its estimation. It was also found that for a unimodal spectrum, if the Mitsuyasu's spreading coefficient is above 5, the estimation resolutions were high. In bimodal spectrum, as the angle difference between the two peaks increased, the resolution improved. The energy seems to transfer to the smoother peak in the smoothing of peak's peakedness. LHM has a tendency to estimate bimodal spectrum as a unimodal spectrum ; thus, except for its computational speed, the resolution of LHM falls far below that of MEM.

  • PDF

Research on a Comparison of Directional Spectrum Wave Generation and Measurement Method in a Towing Tank (예인수조에서의 방향 스펙트럼파의 조파 및 계측 기법 비교 연구)

  • 이진호;하문근;박건일
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • WLV LPSRUWDQW WR UHDOL] H GLUHFWLRQDO VSHFWUXP ZDYP VHDNHHSLQJ SHU IRUPDQFH Rl PDULQH YHKLF OHV WK SUDF LWHUDWLRQ PHWK RG LQ WKH YLHZ S H DQG FRPSDUH WKH SU.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane (촬상단면내의 MRI 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.432-440
    • /
    • 2000
  • In this study, a new algorithm for canceling MRI artifact due to translational motion in image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction are estimated simultaneously. However, the features of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x-axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in inverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.