• Title/Summary/Keyword: Directional Relation

Search Result 86, Processing Time 0.022 seconds

Effect on the Compliance of Spindle -Bearing System by the Assembling Tolerance (축-베어링계의 컴플라이언스 특성에 미치는 조립공차의 영향)

  • 이강재;서장력;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.995-999
    • /
    • 1995
  • In spindle-bearing system, the displacement characteristics of the bearing by the load applied on the spindle are affected greatly by the assembling tolerance between the spindle and housing assembled to support the bearing. Also in spindle system of rotational operation, the compliance characteristic of the bearing is expected to be varied frequently by the thermal deformation of the spindle and the housing. To predict the thermal deformation of the spindle including heat generation of the bearing, we need to examine the effect on the compliance of spindle-bearing system by the assembling tolerance. In this paper, we proposed the load-displacement relation expression considering the effect which the variation of contact pressure due to the radial directional assembling tolerance between the bearing and the housing influences on the axial and radial directional displacement characteristics of the bearing. Furthermore, for several assembling systems of bearings and housings having all different assembling tolerances, we proposed a method to predict exactly the variation of the bearing preload which is sensitive to the thermal deformation by showing the propriety with experimental results.

  • PDF

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Analysis on the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys (수지상가지의 조대화를 고려한 이원합금의 응고과정동안 용질 재분배 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1437-1448
    • /
    • 1996
  • This paper presents a simplified model for approximate analysis of the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys. By introducing a quadratic concentration profile with a time-dependent coefficient, the integral equation for diffusion in the solid phase is reduced to a simple differential relation between the coefficient and the solid-liquid interface position. The solid fraction corresponding to the system temperature is readily determined from the relation, phase equilibrium and the overall solute balance in which the liquid phase is assumed to be completely mixed. In order to validate the developed model, calculations are performed for the directional solidification of Al-4.9 mass Cu alloy. The predicted eutectic fractions for a wide range of the cooling rate reasonably agree with data from the well-known experiment as well as sophisticated numerical analyses. Also, the results for the back diffusion limits are consistent with available references. Additional calculations show that the characteristic parameters such as the coarsening, density variation and nonlinarity in the phase diagram significantly affect the microsegregation. Owing to the simplicity, efficiency and compatibility, the present model may be suitable for the micro-macroscopic solidification model as a microscopic component.

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Comparing Directional Parameters of Very Fast Halo CMEs (코로나질량방출의 방향지시 매개인수 비교)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2008
  • We examine geoeffective directional parameters of coronal mass ejections (CMEs). We select 30 front-side halo CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and longitude is less than ${\pm}30^{\circ}$. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs directional parameters (Earthward direction, eccentricity, ${\Delta}$ distance and central angle parameter) and the minimum value of the Dst index. We have found that the Earthward direction parameter has a good correlation with the Dst index, the eccentricity parameter has a much better correlation with the Dst index. The bo distance and central angle parameter has a poor correlation with the Dst index. It's, however, well correlated with the Dst index in very strong geomagnetic storms. Most of CMEs causing very strong storms (Dst ${\leq}$-200nT) are found to have large Earthward direction parameter $({\geq}0.6)$, small eccentricity, bo distance and central angle parameters $(E{\leq}0.4,\;{\Delta}X\;and\;sin\;{\theta}{\leq}0.2)$. These directional parameters are very important parameters that control the geoeffectiveness of very fast front-side halo CMEs.

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

General Relation Extraction Using Probabilistic Crossover (확률적 교차 연산을 이용한 보편적 관계 추출)

  • Je-Seung Lee;Jae-Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.371-380
    • /
    • 2023
  • Relation extraction is to extract relationships between named entities from text. Traditionally, relation extraction methods only extract relations between predetermined subject and object entities. However, in end-to-end relation extraction, all possible relations must be extracted by considering the positions of the subject and object for each pair of entities, and so this method uses time and resources inefficiently. To alleviate this problem, this paper proposes a method that sets directions based on the positions of the subject and object, and extracts relations according to the directions. The proposed method utilizes existing relation extraction data to generate direction labels indicating the direction in which the subject points to the object in the sentence, adds entity position tokens and entity type to sentences to predict the directions using a pre-trained language model (KLUE-RoBERTa-base, RoBERTa-base), and generates representations of subject and object entities through probabilistic crossover operation. Then, we make use of these representations to extract relations. Experimental results show that the proposed model performs about 3 ~ 4%p better than a method for predicting integrated labels. In addition, when learning Korean and English data using the proposed model, the performance was 1.7%p higher in English than in Korean due to the number of data and language disorder and the values of the parameters that produce the best performance were different. By excluding the number of directional cases, the proposed model can reduce the waste of resources in end-to-end relation extraction.

Effect of Joint Errors in a Cubic Parallel Device (육면형 병렬기구에서의 조인트 오차의 영향)

  • Lim, Seung-Reung;Choi, Woo-Chun;Song, Jae-Bok;Hong, Dae-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.87-92
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device, cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include upper and down universal joint errors, due to the directional changes in the forces in the links, and actuation errors. An error analysis is presented based on an error model formed through the relation between the universal joint errors of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in predicting the accuracy of other cubic parallel devices.

  • PDF

Applications of Block Pulse Response Circulant Matrix and its Singular Value Decomposition to MIMO Control and Identification

  • Lee, Kwang-Soon;Won, Wan-Gyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2007
  • Properties and potential applications of the block pulse response circulant matrix (PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO control and identification. The SVD of the PRCM is found to provide complete directional as well as frequency decomposition of a MIMO system in a real matrix form. Three examples were considered: design of MIMO FIR controller, design of robust reduced-order model predictive controller, and input design for MIMO identification. The examples manifested the effectiveness and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix, SVD, MIMO control, identification.