• Title/Summary/Keyword: Direction estimation

Search Result 973, Processing Time 0.028 seconds

A Study on Maximum Likelihood Method for Multi Target Estimation (다중 목표물 추정을 위한 최대 우도 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In spatial, desired target direction of arrival estimation is to find a incidental signal direction on receive antennas. In this paper, we were an estimation a desired target direction of arrival using maximum likelihood method. Direction of arrival estimation method estimated a desired target calculating the maximum likelihood sensitivity using singular value decomposition above threshold signals among receive signals in maximum likelihood method. Through simulation, we were analysis a performance to compare existing method and proposal method. In direction of arrival estimation, proposed method is effectivity to decrease processing time because it is not doing an eigen decomposition in direction of arrival estimation, and desired target correctly estimated. We showed that proposal method improve more target estimation than general method.

A Study on the Desired Target Signal Estimation using MUSIC and LCMV Beamforming Algorithm in Wireless Coherent Channel

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.177-184
    • /
    • 2020
  • In this paper, we studied to direction of arrival (DoA) estimation to use DoA and optimum weight algorithms in coherent interference channels. The DoA algorithm have been considerable attention in signal processing with coherent signals and a limited number of snapshots in a noise and an interference environment. This paper is a proposed method for the desired signal estimation using MUSIC algorithm and adaptive beamforming to compare classical subspace techniques. Also, the proposed method is combined the updated weight value with LCMV beamforming algorithm in adaptive antenna array system for direction of arrival estimation of desired signal. The proposed algorithm can be used with combination to MUSIC algorithm, linearly constrained minimum variance beamforming (LCMV) and the weight value method to accurately desired signal estimation. Through simulation, we compare the proposed method with classical direction of in order to desired signals estimation. We show that the propose method has achieved good resolution performance better that classical direction arrival estimation algorithm. The simulation results show the effectiveness of the proposed method.

A Study on Direction of Arrival Algorithm using Optimum Weight and Steering Direction Vector of MUSIC Algorithm (MUSIC알고리즘의 지향 방향벡터와 최적 가중치를 이용한 도래방향 추정 알고리즘 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myeong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.147-152
    • /
    • 2012
  • This paper estimates the direction of arrival of desired a target using propagation wave in spatial. Direction of arrival estimation is to find desired target position among received signal to receiver array antennas. In this paper, we estimated direction of arrival for target, by using cost function and high resolution MUSIC algorithm, in order to direction of arrival estimation, and calculated optimum weight vector. Through simulation, in regard to the estimation of the arrival direction of a target, the performances of the existing ESPRIT algorithm and the proposed algorithm were comparatively analyzed. In the estimation time of the arrival direction of a target object, the proposed algorithm showed an improvement of approximately as compared to the existing ESPRIT algorithm.

Zero-Crossing-Based Source Direction Estimation Using a Cepstral Prefiltering Technique (영교차점과 켑스트럼 전처리 기술을 이용한 반향환경에서의 음원방향 추정)

  • Park, Yong-Jin;Lee, Soo-Yeon;Park, Hyung-Min
    • MALSORI
    • /
    • no.67
    • /
    • pp.121-133
    • /
    • 2008
  • To estimate directions of multi-sound sources, we consider an approach based on zero crossings which provided more robust results to diffuse noise than the conventional cross-correlation-based method [6][7]. In reverberant environments, the performance of source direction estimation can be improved by using signal components through direct paths from sources to microphones. Since a cepstral prefiltering technique [8] removes the effect of reverberation, we propose a source direction estimation method which can find out intervals of the direct-path components by comparing original and cepstral-prefiltered envelopes. Simulations demonstrate that the proposed method can improve the performance of source direction estimation in reverberant environments.

  • PDF

Underwater Acoustic Source Localization based on the Probabilistic Estimation of Direction Angle (확률적 방향각 추정에 기반한 수중 음원의 위치 인식 기법)

  • Choi, Jinwoo;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.206-215
    • /
    • 2014
  • Acoustic signal is crucial for the autonomous navigation of underwater vehicles. For this purpose, this paper presents a method of acoustic source localization. The proposed method is based on the probabilistic estimation of time delay of acoustic signals received by two hydrophones. Using Bayesian update process, the proposed method can provide reliable estimation of direction angle of the acoustic source. The acquired direction information is used to estimate the location of the acoustic source. By accumulating direction information from various vehicle locations, the acoustic source localization is achieved using extended Kalman filter. The proposed method can provide a reliable estimation of the direction and location of the acoustic source, even under for a noisy acoustic signal. Experimental results demonstrate the performance of the proposed acoustic source localization method in a real sea environment.

Performance Improvement of Sound Direction of Arrival Estimation by Applying Threshold to CPSP (CPSP 문턱값 설정을 통한 음원도달 방향 추정 성능 개선)

  • Quan, Xingri;Bae, Keun-Sung
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.109-114
    • /
    • 2011
  • To estimate sound direction of arrival with a pair of microphones, a method based on Time Difference of Arrival (TDOA) estimation using the Cross Power Spectrum Phase (CPSP) function is largely used due to its simplicity and good performance. In this paper, we investigate CPSP maximum values for various SNRs and adverse environments, and propose a novel method to improve the estimation performance of sound direction of arrival. The proposed method applies a threshold to the CPSP values and increases the reliability of the estimated sound direction. Through computer simulation for various SNRs, we validate the effectiveness of the proposed method. When the threshold was set to 0.1, more than 90% of success rate of sound direction of arrival estimation has been achieved for directions of $10^{\circ}$, $40^{\circ}$, $70^{\circ}$ from the source location even with reverberation times of 0.1s.

  • PDF

Robust Estimation of Position and Direction Based on Robot Velocity in the Inner GPS Environment (실내 GPS 환경에서 로봇의 이동속도기반 강인한 위치 및 방향 추정)

  • Kim, Sung-Suk;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2010
  • The accurate estimation of position and direction of the mobile robot is essential for preparing precise movement and works in the inner complex environment. In this paper, we propose a robust estimation method of location and direction using the velocity of mobile robot in the inner GPS environment. The estimation using the inner GPS with ultrasonic sensors have to consider with various acoustic noise and sensor errors. We design a robust estimation method using a membership function based on uncertainty of the obtained information and robot velocity. The simulation results of the proposed method show effectiveness in the contaminated environment with position errors.

Estimation of Distributed Signal's Direction of Arrival Using Advanced ESPRIT Algorithm (개선된 ESPRIT 알고리즘을 이용한 퍼진 신호의 신호도착방향 추정)

  • Chung, Sung-Hoon;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.703-705
    • /
    • 1999
  • In this paper, we introduce the direction of arrival(DOA) estimation of distributed signal based on the improved ESPRIT algorithm. Most research on the estimation of DOA has been performed based on the assumption that the signal sources are point sources. However, we consider a two-dimensional distributed signal source model using improved ESPRIT algorithm. In the distributed signal source model, a source is represented by two parameters, the azimuth angle and elevation angle. We address the estimation of the elevation and azimuth angles of distributed sources based on the parametric source modeling in the three-dimensional space with two uniform linear arrays. The array output vector is obtained by integrating a steering vector over all direction of arrival with the weighting of a distributed source density function. We also develop an efficient estimation procedures that can reduce the computational complexity. Some examples are shown to demonstrate explicity the estimation procedures under the distributed signal source model.

  • PDF

Fast Patch-based De-blurring with Directional-oriented Kernel Estimation

  • Min, Kyeongyuk;Chong, Jongwha
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.46-65
    • /
    • 2017
  • This paper proposes a fast patch-based de-blurring algorithm including kernel estimation based on the angle between the edge and the blur direction. For de-blurring, image patches from the most informative edges in the blurry image are used to estimate a kernel with low computational cost. Moreover, the kernels of each patch are estimated based on the correlation between the edge direction and the blur direction. This makes the final kernel more reliable and creates an accurate latent image from the blurry image. The combination of directionally oriented kernel estimation and patch-based de-blurring is faster and more accurate than existing state-of-the art methods. Experimental results using various test images show that the proposed method achieves its objectives: speed and accuracy.

A Study on Maximum Posterior Probability Estimator for Direction of Arrival Estimation of Incoming Signal (입사신호의 도래방향 추정을 위한 최대 사후 확률 추정기에 대한 연구)

  • Lee, Kwan-Hyeong;Park, Sung-Kon;Jeong, Youn-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.190-195
    • /
    • 2016
  • In this paper, we are comparative analysis both class method and proposal method in order to estimation of incident signal direction on uniform array antenna system. Proposal method of this paper decrease error probability for a signal direction of arrival estimation using maximum posterior probability estimator. If it decrease to signal estimation direction error probability, signal direction of arrival can correctly estimate. Through simulation, we were comparative analysis proposed method and class method. Also, we were comparative analysis about signal estimation error probability with increasing array antenna element. We show the superior performance of the proposed method relative to the class method to decrease of signal estimation error probability about 12%.