• Title/Summary/Keyword: Direction Estimation

Search Result 974, Processing Time 0.031 seconds

A Study on Combined DoA Estimation Algorithm using LCMV and Maximum Posterior on Uniform Linear Array Antenna (균일 선형 배열 안테나에서 선형구속최소분산 방법과 사후 추정 확률을 결합한 도래 방향 추정 알고리즘 연구)

  • Lee, Kwan-Hyeong;Park, Sung-Kon;Jeong, Youn-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • In this paper, we are comparative analysis of exit algorithm and proposal algorithm for desired target direction of arrival estimation in correlation signal system. Proposed algorithm in this paper is to decrease target direction of arrival an estimation error probability using bayesian, maximum posterior, and MUSIC algorithm in order to decrease direction of arrival error probability as optimize and use linear constrained minimum variance to update weight value. Through simulation, we were comparative analysis proposed algorithm and exit MUSIC algorithm. In case SNR is 10dB and antenna element arrays are 9 and 12, We show the superior performance of the proposed method relative to the class method to decrease of signal estimation error probability about 11% and 13%, respectively.

Tracking Algorithm of Vessel's Contour using ML estimation (ML 추정을 이용한 혈관 윤곽 추적 알고리듬)

  • Park, S.I.;Lee, J.S.;Koo, J.Y.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.150-153
    • /
    • 1997
  • The proposed tracking algorithm approaches geometrical method or position, direction, width of vessel. This algorithm using continuity of vessel in spatial coordinates used to determine direction of the center point, after estimating boundary point in dynamic region. Therefore the tracking of vessel's contour is tracked contour as direction of entire contour in coronary artery. This algorithm is automatically processed by DIP as a compared with conventional method, because searching area varies adaptively to allocate searching region from extracted information at past. And ML estimation expressed robust method or angiography as evaluating sample values after preprocessing.

  • PDF

TIME DELAYED CONTROLLER를 이용한 유압 시스템의 위치 제어

  • 진성무;현장환;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.204-208
    • /
    • 2001
  • Position control of the electro-hydraulic servo indexing system in a flexible forging machine was investigated Flexible forging machine forges an axial type workpiece in the radial direction as well as in the axial direction. The role of the indexing system is to rotate a workpiece fast and accurately to a desired position for continuous shaping. Since the inertia of a workpiece changes during each forging step, a control technique which is robust to inertia variation should be adopted to the position control of the workpiece. In this study, time delayed control technique is applied to the servo system. Time delayed control method does not depend on estimation of specific parameters. Rather, it depends on the direct estimation of a function representing the effect of uncertainties. Direct estimation is accomplished using time delay and the gathered information is used to cancel the unknown dynamics is accomplished using disturbances simultaneously. Experimental result show that the time delayed controller is robust to inertia variation of the load, and satisfactory performance on the sposition accuracy is obtained compared to the contentional feedback control.

A Study on the Numerical Calculation for Shallow Water Waves Considering the Wind Direction Characteristics of Typhoon (태풍의 풍향특성을 고려한 천해파 산정에 관한 연구)

  • Lee, Kyung-Seon;Kim, Jung-Tae;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.1-6
    • /
    • 2007
  • While a typhoon is traveling, characteristics of its wind fields are continuously changing, producing severe changes in local water level and wave conditions, especially, when a typhoon comes into shallow water. However, there have not been many studies related to local typhoon effects, especially, considering real time changes of wind direction related to the coastal topography. In the study, the characteristics of the wind field by typhoon and topographical characteristics in shallow water are considered, as well as conditions of wave climate estimation. These are performed by the SWAN (Simulating waves nearshore) model, in order to estimate the growth of wave energy due to the wind field. It can be strongly suggested that the wave energy of theof an inner bay should be estimated when the direction of the bay entrance and the wind direction of the typhoon are identical. The result of the numerical calculations is in better agreement with the observed data than the result of the conventional estimation techniques.

Acoustic Sources Localization in 3D Using Multiple Spherical Arrays

  • Wang, Fangzhou;Pan, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.759-768
    • /
    • 2016
  • Direction of arrival (DOA) estimation of multiple sources using sensor arrays has been widely studied in the last few decades, particularly, the spherical harmonic analysis utilizing a spherical array. Both the number of sensors on the aperture and size of the sphere can affect the estimation accuracy dramatically. However, those two factors are conflicted to each other in a single spherical array. In this paper, a multiple spherical arrays structure is proposed to provide an alternative design to the traditional single spherical array for the spherical harmonic decomposition, to obtain better localization performance. The new structure consists of several identical spheres in a given area, and the microphones are placed identically on each sphere. The spherical harmonic analysis algorithm using the new multiple array structure for the problem of multiple acoustic sources localization is presented. Simulation results show that the multiple spherical arrays can provide a more accurate direction of arrival (DOA) estimation for the multiple sources than that of a single spherical array, distinguish several adjacent sources more efficiently, and reduce the number of microphones on each sphere without decreasing its’ estimation accuracy.

Measurement and Arrival Direction Estimation of Supersonic Flight Sonic Boom (초음속 비행체의 소닉붐 측정과 도래각 추정)

  • Ha, Jae-hyoun;Jung, Suk Young;Lee, Younghwan;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.175-183
    • /
    • 2021
  • This paper studies measurement of sonic boom created by supersonic flight and its arrival angle estimation techniques. Since sonic boom propagates as an impulsive noise and includes infrasound frequency, we propose measurement instrumentation acquiring sonic boom signature without distortion. And we suggest the methodology for an arrival angle estimation with its performance analysis in accordance with sensor array configurations. The performance of our estimator is verified by comparing theoretical performance bound with statistics of its Monte-Carlo simulation results. Furthermore, we presents the analysis of the sonic boom measurement from real flight tests. This work provides an intuitive concept for sensor array configurations and measurement instrumentation.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • This paper presents a method to estimate steady wind and airspeed bias error using an aircraft with GPS and airspeed sensor. The estimation uses the vector relation between the inertial, air, and wind velocities through a novel design of an extended Kalman filter. The observability analysis is also presented to show that the aircraft is required to keep changing its flight direction for the desired observability. The feasibility and performance of the proposed algorithm is demonstrated through simulations and flight experiments.

Direction Estimation of Multiple Sound Sources Using Circular Probability Distributions (순환 확률분포를 이용한 다중 음원 방향 추정)

  • Nam, Seung-Hyon;Kim, Yong-Hoh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.308-314
    • /
    • 2011
  • This paper presents techniques for estimating directions of multiple sound sources ranging from $0^{\circ}$ to $360^{\circ}$ using circular probability distributions having a periodic property. Phase differences containing direction information of sources can be modeled as mixtures of multiple probability distributions and source directions can be estimated by maximizing log-likelihood functions. Although the von Mises distribution is widely used for analyzing this kind of periodic data, we define a new class of circular probability distributions from Gaussian and Laplacian distributions by adopting a modulo operation to have $2{\pi}$-periodicity. Direction estimation with these circular probability distributions is done by implementing corresponding EM (Expectation-Maximization) algorithms. Simulation results in various reverberant environments confirm that Laplacian distribution provides better performance than von Mises and Gaussian distributions.