• Title/Summary/Keyword: Direction Computation

Search Result 215, Processing Time 0.032 seconds

Modification of QUICK Scheme for Unstructured Grid Finite Volume Method (비정렬 유한체적법을 위한 QUICK법의 수정)

  • Kang, Dong Jin;Bae, Sang Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1148-1156
    • /
    • 2000
  • The QUICK scheme for convection terms is modified for unstructured finite volume method by using linear reconstruction technique and validated through the computation of two well defined laminar flows. It uses two upstream grid points and one downstream grid point in approximating the convection terms. The most upstream grid point is generated by considering both the direction of flow and local grid line. Its value is calculated from surrounding grid points by using a linear construction method. Numerical error by the modified QUICK scheme is shown to decrease about 2.5 times faster than first order upwind scheme as grid size decreases. Computations are also carried out to see effects of the skewness and irregularity of grid on numerical solution. All numerical solutions show that the modified QUICK scheme is insensitive to both the skewness and irregularity of grid in terms of the accuracy of solution.

Numerical Investigation of Cross- Flow of a Circular Cylinder Under an Electromagnetic Force (전자기력을 이용한 유동제어에 관한 수치해석적 연구)

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.148-153
    • /
    • 2001
  • A computational investigation of the effect of the electromagnetic force(or Lorentz force) on the flow behavior around a circular cylinder, a typical model of bluff bodies, is conducted. Two-dimensional unsteady flow computation for $Re=10^2$ is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of the spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of the circular cylinder cross-flow, leading to the reduction of the drag.

  • PDF

An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept (가변 시간 분해능 시간 영역 전자파 해석법)

  • Kim Hyung-Hoon;Park Jong-Il;Kim Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.890-894
    • /
    • 2006
  • To make the best use of known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical experiment shows that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest. The proposed method can be used to analyze electromagnetic problems with reduced computation time.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

Forging Defects Analysis by Full 3-Dimensional Simulation based on F.V.M. (단조품 결함에 대한삼차원 단조 공정 해석)

  • 박승희;제정신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.216-220
    • /
    • 2003
  • Most important for meaningful forging simulation is the determination of correct process parameters. In addition a check and a compensation of the data base after the comparison between experiments and the computation of the developed process is necessary. The existence of a systematic process parameter data bank for special kinds of forming process in combination with forging specific simulation lifts the value of the products. Finite volume method is applied to simulate the hot forging process to investigate the defects for the automobile product. Three typical forging processes have been investigated; Extrusion by hydrolic press, Upsetting by crank press and Inclined upsetting by hammer press. Simulated result has compared with the experiment and provided a direction to improve the process.

  • PDF

Optimum Design for Static Torque Characteristics of Claw-Poles PM Stepping Motor Using Pattern Search Algorithm and 3-Dimension Finite Element Method (3차원 유한요소법과 패턴 탐색 알고리즘을 이용한 영구자석형 클로우폴 스테핑 모터의 정토크 특성 최적설계)

  • Cho, Su-Yeon;Ham, Sang-Hwan;Bae, Jae-Nam;Park, Hyun-Jong;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.670_671
    • /
    • 2009
  • This paper presents a optimum design process for static torque characteristics of the Claw-Poles PM Stepping Motor(CPSM). Since the shape of CPSM changes along with axial direction, CPSM should only be analyzed by 3D-FEM. But 3D-FEM needs too much computation time and computer resources. Therefore, it is essential to reduce the number of 3D-FEM analysis models. In this paper, two design factors which affect the static torque characteristics of CPSM were selected. Optimum design process was able to make progress by using Pattern Search Algorithm and 3D-FEM. Finally, optimized model was compared with a conventional model.

  • PDF

Computation of stress Intensity Factors of Hollow Cylinder with Three Dimension Inclination Cracks (3차원 경사크랙을 가진 중공축의 응력확대계수산정)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In this study, stress intensity factors KI, KII, KIII are existing at the same time to a hollow cylindrical bar of three dimension inclination crack. In order to investigate by experimentally the effect of the inclination angle $\psi$ of crack, artificial inclination cracks in the circumferential direction are put in the surface of a hollow cylindrical bar made by the epoxy-resin. Experimentally, stress analysis methods of stress intensity factors were proposed. But, suitable method are the caustic method and the photoelastic stress freezing method. The mixed mode of KI, and KII, were determined by the photoelastic method of the classical approach method and the FORTRAN language program of the used smallest square method.

  • PDF

Calculation on the Ion Flow Field under HVDC Transmission Lines Considering Wind Effects

  • Wu, Jing;Gao, Sheng;Liu, Yuxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2077-2082
    • /
    • 2015
  • Based on Deutsch assumption, a calculation method on the electric field over the ground surface under HVDC transmission lines in the wind is proposed. Analyzing the wind effects on the electric field and the space charge density the existing method based on Deutsch assumption is improved through adding the wind speed to the ion flow field equations. The programming details are illustrated. The calculation results at zero wind speed are compared with available data to validate the code program. Then the ionized fields which resulted from corona of ±800kV HVDC lines are analyzed. Both the electric field and the current density on the ground level are computed under different wind direction and speed. The computation results are in good agreement with measurements. The presented method and code program can be used to rapidly predict and evaluate the wind effects in HVDC transmission engineering.

Aerodynamic Design and Performance Prediction of Wind Turbine Blade (풍력터빈 블레이드 공력설계 및 성능예측)

  • Kim, Cheol-Wan;Cho, Tae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.677-681
    • /
    • 2011
  • Characteristics of vertical and horizontal axis wind turbines are explained. The speed and direction of wind on the blade of the Darrieus type turbine changes very severely. Therefore dynamic stall happens periodically and the wake from the front blade deteriorates the performance of rear blades. Blade element momentum theory(BEMT) is widely utilized for aerodynamic design and performace prediction of horizontal axis wind turbine(HAWT). Computation analysis and wind tunnel test are also performed for the performance prediction.

  • PDF

Study on the Wake Evolution on the Non-Planar Ground Using a Discrete Vortex Method (이산와류법을 사용한 비평면 지면 와류전개 연구)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.21-24
    • /
    • 2016
  • Accurate simulation of wakeshapes behind a wing is important for the performance prediction of the aircraft and the wake hazard problem in the airport. In the present study, wakeshapes behind a wing inside tunnels are simulated in regard to the development of wing-in-ground effect vehicles. A discrete vortex method with a nonplanar ground modelling is used for the simulation. It was found that the wingtip vortices move toward outboard directions when the wing is in ground effect. When the wing is placed inside tunnels, the wingtip vortices move along the tunnel wall with counter clockwise direction. As the gap between the wingtip and the tunnel decreases, the wingtip vortices move further along the tunnel wall. Both vortices from bothsides of the wing will murge, which will be studied in future using a viscous computation.