• Title/Summary/Keyword: Direct3D

Search Result 1,697, Processing Time 0.031 seconds

A Study on Manufacturing System Integration with a 3D printer based on the Cloud Network (클라우드 기반 3D 프린팅 활용 생산 시스템 통합 연구)

  • Kim, Chi-yen;Espaline, David;MacDonald, Eric;Wicker, Ryan B.;Kim, Da-Hye;Sung, Ji-Hyun;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2015
  • After the US government declared 3D printing technology a next-generation manufacturing technology, there have been many practical studies conducted to expand 3D printing technology to manufacturing technologies, called AMERICA MAKES. In particular, the Keck Center, located at the University of Texas at El Paso, has studied techniques for easily combing the 3D stacking process with space mobility and expanded these techniques to simultaneous staking techniques for multiple materials. Additionally, it developed convergence manufacturing techniques, such as direct inking techniques, in order to produce a module structure that combines electronic circuits and components, such as CUBESET. However, in these studies, it is impossible to develop a unified system using traditional independent through simple sequencing connections. This is because there are many problems in the integration between the stacking modeling of 3D printers and post-machining, such as thermal deformations, the precision accuracy of 3D printers, and independently driven coordinate problems among process systems. Therefore, in this paper, the integration method is suggested, which combines these 3D printers and subsequent machining process systems through an Internet-based cloud. Additionally, the sequential integrated system of a 3D printer, an NC milling machine, machine vision, and direct inking are realized.

A Study on the Indirect Copy of Dancheong Patterns Using Three-dimensional Scanning (3차원 스캐닝을 활용한 단청문양의 간접전사 연구)

  • An, Ji Eun;Choi, Chan Ho;Kim, Sung June;Yoon, Man Young
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.471-479
    • /
    • 2018
  • Seonunsa Temple is a site of Dancheong cultural significance in Daewoongjeon. Three-dimensional (3D) scanning can be used to create a simulation in 1:1 ratio without touching the Dancheong patterns directly. The traditional method of recreating Dancheong was paining with tracing paper using a fix pin. However, manual direct copy processes can cause and damage to the objects. This study shows the results of a simulation of a tranditional Dancheong patterns as an alternative; the simulation was able to reduce dimensional errors and prevent damage by using 3D scanning. As a result, objective and precise proportions of the simulation were acquired. The 3D scanning method may be applied for work such as the replication and restoration of the drawing, 3D fabrication of the original data, and printing of the additional drawing. In addition, with the production of 3D materials, a virtual museum is possible.

The Creational Patterns Application to the Game Design Using the DirectX (DirectX를 이용한 게임 설계에서의 생성 패턴 적용 기법)

  • Kim, Jong-Soo;Kim, Tai-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.536-543
    • /
    • 2005
  • 3D online game, with its striking realistic value, is leading the entire Korean game market which has various game genres. Technology sharing is very hard within the Korean game industry. That is because 1)there are few professionals, 2)most of the companies are small-scaled, and 3)there are security reasons. Therefore, it should be significant if we have software design techniques which make it possible to reuse the existing code when developing a network game so that we could save a lot of efforts. In this paper, the author analyzes the demand through the case in the client's design of the network game based on DirectX and proposes the effective software design methods for reusable code based on the creative patterns application in the GoF in the class design.

  • PDF

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Lower Body Type Classification of Women Aged 20-30 for the Development of Riding Breeches (승마바지 개발을 위한 20~30대 성인여성의 하반신 유형 분류)

  • Lee, Ji-Eun;Kwon, Young-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1075-1094
    • /
    • 2013
  • This study analyzed the lower body type of women aged 20 to 30 to understand their respective characteristics. The research method was restricted to the use of direct measurements data and 3D measurements data of the Sixth Size Korea. Factor analysis, cluster analysis, ANOVA, Duncan's test, discriminant analysis, t-test, and ${\chi}^2$-test were performed for the statistical analysis of the data using SPSS Win 20.0 program. The results of this study are as follows. Lower body type based on 3D measurements were classified into 3 types (obese lower body, long lower body, and small lower body). Lower body type based on direct measurements were classified into 3 types (obese lower body, thick and long lower body, and small lower body). Lower body type based on the direct measurement of sitting pose were classified into 3 types (obese lower body, long and thin lower body, and short lower body). The age differences in the lower body types could be analyzed by an evaluation of the 3D simulation of the lower body.

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

3GPP LTE-Assisted Wi-Fi-Direct: Trial Implementation of Live D2D Technology

  • Pyattaev, Alexander;Hosek, Jiri;Johnsson, Kerstin;Krkos, Radko;Gerasimenko, Mikhail;Masek, Pavel;Ometov, Aleksandr;Andreev, Sergey;Sedy, Jakub;Novotny, Vit;Koucheryavy, Yevgeni
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.877-887
    • /
    • 2015
  • This paper is a first-hand summary on our comprehensive live trial of cellular-assisted device-to-device (D2D) communications currently being ratified by the standards community for next-generation mobile broadband networks. In our test implementation, we employ a full-featured 3GPP LTE network deployment and augment it with all necessary support to provide realtime D2D connectivity over emerging Wi-Fi-Direct (WFD) technology. As a result, our LTE-assisted WFD D2D system enjoys the required flexibility while meeting the existing standards in every feasible detail. Further, this paper provides an account on the extensive measurement campaign conducted with our implementation. The resulting real-world measurements from this campaign quantify the numerical effects of D2D functionality on the resultant system performance. Consequently, they shed light on the general applicability of LTE-assisted WFD solutions and associated operational ranges.

Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts (레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화)

  • Jeong, Wonjong;Kwon, Young-Sam;kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material (입체면 복합 폴리머 소재의 전도성 패턴 제작 기술)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.224-234
    • /
    • 2016
  • This study developed the conductivity pattern of solid surface using laser direct pattern and compound polymer material technology. For development direct patterning system of solid surface, we used the laser power stabilizer, the dynamic focusing, 3D scanner S/W and the auto aligning techniques. Also For conductivity pattern, we are developed compound polymer material with additive by electro-less plating. These technologies are already used commercially. However operation and control integrated system for direct patterning of solid surface are not yet developed. The objective of this paper is to introduce the laser direct structuring for simple process improvement instead complex PCB process, and develop the operating stability and integration system. Also we implemented new application of laser direct structuring through sample manufacture.

The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels (보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.