Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.818

The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels  

Park, Hyeon Tae (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
Kwon, Eui Pyo (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
Im, Ik-Tae (Department of Mechanical Design Engineering, Jeonbuk National University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 818-824 More about this Journal
Abstract
In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.
Keywords
hot stamping; direct water quenching; boron steel; cooling rate; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Karbasian and A. E. Tekkaya, J. Mater. Process. Technol., 210, 2103 (2010).   DOI
2 M. Naderi, M. Ketabchi, M. abbasi and W. bleck, J. Mater. Sci. Technol., 27, 369 (2011).   DOI
3 M. Merklein, J. Lechler. J. Mater. Process. Technol., 177, 452 (2006).   DOI
4 J. Zhou, B. Wang, M. Huang and D. Cui. J. Mater. Int., 21, 544 (2014).
5 M. Muro, G. Artola, A. Gorrino and C. Angulo, Metals, 8, 385 (2018).   DOI
6 H. Fuckuchi and N. Nomura, Nippon Steel & Sumitomo Metal Technical Report, 112, (2016).
7 S. Kim and H. Kong, J. Welding and Joining, 33, 36 (2015).   DOI
8 T. Maeno, K. I. Mori and M. Fujimoto, CIRP Annals Manuf. Technol., 64, 281 (2015).   DOI
9 K. Mori, P. F. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein and J. Yanagimoto, CIRP Annals Manuf. Technol., 66, 755 (2017).   DOI
10 P. Namklang, V. Uthaisangsuk, J. Manuf. Processes, 21, 87 (2016).   DOI
11 B. C. Hwang, Korean J. Mater. 25, 497 (2015).   DOI
12 S. I. Lee, Y. Cho and B. C. Hwang, Korean J. Mater., 26, 325 (2016).   DOI
13 R. Neugebauer, T. Altan, M. Geiger, M. Kleiner and A. Sterzing, CIRP. Annals., 55, 793 (2006).   DOI
14 B. F, B. Gonzalez, G. Artola, N. Lopez de Lacalle and C. Angulo, Metals, 9, 235 (2019).   DOI