• Title/Summary/Keyword: Direct strength method

Search Result 424, Processing Time 0.03 seconds

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

A Study on the Monitoring Method of Landslide Damage Area Using UAV (UAV를 이용한 산사태 피해지역 모니터링 방법에 관한 연구)

  • Kim, Sung-Bo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1043-1050
    • /
    • 2020
  • In this study, a study was presented on the monitoring technique of landslide area using UAV. In the case of disaster investigation using drone mapping, it can be used at various disaster sites. The mission can be carried out at various disaster sites, including surveys of damage to mountainous areas caused by landslides, building collapses surveys of flood damage, typhoons, earthquakes. The damage investigation plan using drone mapping is expected to be highly utilized at disaster sites where investigators cannot access it like in mountainous areas and where it is difficult to conduct direct damage investigations at the site. Drone mapping technology has many advantages in terms of disaster follow-up, such as recovery. Compared to the existing survey system, which was mainly carried out manually, the investigation time can be drastically reduced, and it can also respond to disaster sites that are difficult to carry out or are difficult to access directly. In addition, it is possible to establish and guide spatial data at the disaster site based on accurate mapping data from the time of the disaster, which has considerable strength in managing the situation of the disaster site, selecting priority areas for recovery, and establishing recovery plans. As such, drone mapping is a technology that can be used in a wide range of sites along with natural disasters and social disasters. If a damage investigation system is established through this, it is believed that it will contribute significantly to the rapid establishment of recovery plans along with the investigation of disaster response time and extent of damage recovery.

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Development of Disaster Situation Specific Tailored Weather Emergency Information Alert System (재난 상황별 맞춤형 기상긴급정보 전달 시스템 개발)

  • Yong-Yook Kim;Ki-Bong Kwon;Byung-Yun Lee
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: The risk of disaster from extreme weather events is increasing due to the increase in occurrence and the strength of heavy rains and storms from continued climate change. To reduce these risks, emergency weather information customized for the characteristics of the information users and related circumstances should be provided. Method: A first-stage emergency weather information delivery system has been developed to provide weather information to the disaster-risk area residents and the disaster response personnel. Novel methods to apply artificial intelligence to identify emergencies have been studied. The relationship between special weather reports from meteorological administration and disaster-related news articles has been analyzed to identify the significance of a pilot study using text analytic artificial intelligence. Result: The basis to identify the significance of the relations between disaster-related articles and special weather reports has been established and the possibility of the development of a real-world applicable system based on a broader analysis of data has been suggested. Conclusion: Through direct alert delivery of weather emergency alerts, a weather emergency alert system is expected to reduce the risk of damage from extreme weather situations.

Evaluation of MODIS NDVI for Drought Monitoring : Focused on Comparison of Drought Index (가뭄모니터링을 위한 MODIS NDVI의 활용성 평가: 가뭄지수와의 비교를 중심으로)

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.117-129
    • /
    • 2009
  • South Korea has been undergoing spring drought periodically and diverse researches using vegetation index have been carried out to monitor spring droughts. The strength of the vegetation index-based drought monitoring is that the monitoring method enables efficient spatio-temporal grasp of changes in drought events. According to the development of low resolution satellite images such as MODIS, which are characterized by outstanding temporal resolution, the use of the method is expected to increase. Drought analysis using vegetation index considered only meteorological factor as a cause that affects vitality of vegetation. But many indirect and direct factors affect vegetation stress, So many uncertainties are involved in such method of analysis. To secure objectivity of drought analysis that uses vegetation index it is therefore necessary to compare the method with most representative drought analysis tools that are used for drought management. In this study, PDSI and SPI which a meteorological drought index that quantifies drought and that is used as a basic index for drought monitoring and MODIS NDVI are compared to propose correlation among them and to show usefulness of drought assessment that uses vegetation index. This study shows changing patterns of NDVI and SPI 6-month are similar and correlation between NDVI and SPI was highest in inland vegetation cover.

  • PDF

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Shoulder Surfing Attack Modeling and Security Analysis on Commercial Keypad Schemes (어깨너머공격 모델링 및 보안 키패드 취약점 분석)

  • Kim, Sung-Hwan;Park, Min-Su;Kim, Seung-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1159-1174
    • /
    • 2014
  • As the use of smartphones and tablet PCs has exploded in recent years, there are many occasions where such devices are used for treating sensitive data such as financial transactions. Naturally, many types of attacks have evolved that target these devices. An attacker can capture a password by direct observation without using any skills in cracking. This is referred to as shoulder surfing and is one of the most effective methods. There has been only a crude definition of shoulder surfing. For example, the Common Evaluation Methodology(CEM) attack potential of Common Criteria (CC), an international standard, does not quantitatively express the strength of an authentication method against shoulder surfing. In this paper, we introduce a shoulder surfing risk calculation method supplements CC. Risk is calculated first by checking vulnerability conditions one by one and the method of the CC attack potential is applied for quantitative expression. We present a case study for security-enhanced QWERTY keyboard and numeric keypad input methods, and the commercially used mobile banking applications are analyzed for shoulder surfing risks.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.