• Title/Summary/Keyword: Direct numerical simulation

Search Result 454, Processing Time 0.029 seconds

Application of the Goore Scheme to Turbulence Control for Drag Reduction(II)-Application to Turbulence Control-

  • Lee, Chang-Hun;Kim, Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1580-1587
    • /
    • 2001
  • In Part I, we extended the capability of the Goore Scheme for application to multi-dimensional problems and improved convergence performance. In this paper, we apply the improved Goore Scheme to th e control of turbulence for drag reduction. Direct numerical simulations combined with the control scheme are carried out to simulate a controlled turbulent channel flow at low Reynolds number. The wall blowing and suction is applied through the Goore algorithm using the total drag as feedback. An optimum distribution of the wall blowing and suction in terms of the wall-shear stresses in the spanwise and streamwise directions is sought. The best case reduces drag by more than 20 %.

  • PDF

A Study on Oxy-Fuel Combustion System with Multi-Jet Burner-Numerical Simulation with PDF Combustion Model (다공 동축 버너를 이용한 순산소 연소 시스템에 관한 연구-PDF 연소 모델을 이용한 수치해석)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Hong, Jung-Goo;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.504-512
    • /
    • 2008
  • The characteristics of nonpremixed oxy-fuel flame in a multi-jet burner were experimentally and numerically investigated. The overall flow rate of fuel and oxygen was fixed, and the oxygen feeding ratio (OFR) was varied by 0.25, 0.5, and 0.75. The results of numerical simulation were compared with the measured results which are temperature profile and direct flame observation. The probability density function (PDF) model was applied accounting to the description between turbulence and chemistry, and standard ${\kappa}-{\varepsilon}$ model was used for turbulent flow field. Equilibrium assumption is very reasonable due to fast chemistry of the oxy-fuel combustion. Thus, the equilibrium calculation based on Gibbs free energy minimization was guaranteed to generate the solution of the oxy-fuel combustion. The result was obtained by numerical simulation. The predicted radial temperature profiles were in good agreement with the measured results. The flame length was shorten and was intensified with the decrease of OFR because the mixture of fuel and oxidizer are fast mixed and burnt. The maximum temperature became lower as the OFR increased, as a consequence of large flame surface area.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure (미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.

Numerical Study on Characteristics of Low-Frequency Noise in a Cylindrical Combustor (원통형 연소기 내의 저주파 소음특성에 관한 수치적 연구)

  • 김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.492-497
    • /
    • 1998
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can give rise to serious troubles such as the destruction of system or producing of a strong noise. Accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem. Especially, considering the reaction of mixture intensifies the difficulty of analysis. Like as other simulations of the aerodynamics and aeroacoustics, direct computation of thermoacoustic phenomena requires that the Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. In this study,, numerical approach aims at qualitative analysis and efficient prediction of problem, not at the development of an accurate scheme. Overally speaking, numerical prediction is reasonably matched with experimental result.

  • PDF

Simulation and Validation of Methanol Crossover in DMFCs (직접메탄올 연료전지의 메탄올 크로스오버에 대한 시뮬레이션 및 검증)

  • Ko, Johan;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.1-126.1
    • /
    • 2010
  • In direct methanol fuel cells(DMFCs), it is well known that methanol crossover severely reduces the cell performance and the cell efficiency. There are a number of design and operating parameters that influence the methanol crossover. This indicates that a DMFC demands a high degree of optimization. For the successful design and operation of a DMFC system, a better understanding of methanol crossover phenomena is essential. The main objective of this study is to examine methanol-crossover phenomena in DMFCs. In this study, 1D DMFC model previously developed by Ko et al. is used. The simulation results were compared with methanol-crossover data that were measured by Eccarius et al. The numerical predictions agree well with the methanol crossover data and the model successfully captures key experimental trends.

  • PDF

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.

Analysis of Monopropellant Thruster Plume Effects by DSMC (DSMC를 이용한 단일추진제 추력기 플룸의 영향 해석)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;You, Jae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.179-182
    • /
    • 2007
  • The new KOMPSAT in preliminary design phase will utilize 4.45 N monopropellant thrusters for attitude and orbit control. In this paper, a numerical plume analysis is performed to verify the effects of thruster plume on the satellite with a 3-D satellite base region model by DSMC. As a result, plume behaviors such as overall plume temperature, total density and thermal radiation to solar array are estimated.

  • PDF

Direct Simulation of Edge Tones by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 Edge음의 직접계산)

  • Kang, Ho-Keun;Kim, Yu-Taek;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.671-677
    • /
    • 2003
  • Two-dimensional direct numerical simulation of the edge-tones by the finite difference lattice Boltzmann method (FDLBM) is presented. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. It is clarified that the sound wave generated in rather wide region and individual vortices do not affect the sound wave propagation.

  • PDF

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF