• Title/Summary/Keyword: Direct electron flow

Search Result 26, Processing Time 0.041 seconds

A Study on an Operating Conditions for the Direct Ethanol Fuel Cell (직접에탄올 연료전지의 운전조건에 관한 연구)

  • Kim, Young-Chun;Koo, Bon-Kook;Jang, Mun-Gug;Ji, Hag-Bae;Han, Sang-Bo;Park, Jae-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2076-2082
    • /
    • 2011
  • The goal of this paper is to find an operating conditions of the single direct ethanol fuel cell such as the cell temperature, and flow rates of ethanol and oxygen. To investigate the output characteristics, the electrical current increased from 0[A] with interval of 0.001[A] every 2[s], and the cell voltage was increased until the voltage became 0.05[V]. Related to the effect of the cell temperature, the output characteristics both voltage and power were increased upto 80[$^{\circ}C$] according to the increase of the current density, but those were decreased over that temperature. In addition, the optimal flow rate of ethanol in anode was identified as of 2[mL/min] due to the dependence of generation rate such as the hydrogen ion and electron. And the flow rate of oxygen in cathode was desirable to about 300[sccm/min], it might be affected by the chemical reaction rate of the water formation among hydrogen ion, electron, and oxygen. Consequently, the fundamental conditions were identified in this work, and it will be carried out to find the best conditions of membrane by the effect of the plasma surface treatment, and the effect of other catalysts except for a platinum.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Exhaust Plasma Characteristics of Direct-Current Arcjet Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.327-334
    • /
    • 2004
  • Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a metal plate for a 10-㎾-class direct-current arcjet Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used. The NH$_3$ and $N_2$+3H$_2$ plasmas in the nozzle and in the downstream plume without a plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the $N_2$ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a plate except for the NH rotational temperature for NH$_3$ gas. On the other hand, as approaching the plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H$_2$ mole fraction raised them at a constant radial position. In cases with NH$_3$ and $N_2$+3H$_2$ a large number of NH radical with a radially wide distribution was considered to cause a large amount of energy loss, i.e., frozen flow loss, for arcjet thrusters.

  • PDF

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

Electron Emission Property of Carbon Nanotubes Grown Using Different Source Gases

  • Han, Jae-Hee;Lee, Tae-Young;Yoo, Ji-Beom;Park, Chong-Yun;Jung, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.658-661
    • /
    • 2002
  • Chemical species during growth of carbon nanotubes (CNTs) in direct current-plasma enhanced chemical vapor deposition were studied in details using $C_3H_4-NH_3$ and $CO-NH_3$ mixtures through optical emission spectroscopy (OES). In the $C_3H_4-NH_3$ system, the relative intensities of CN (388.3 nm) and CH (431.4 nm) decreased and that of $C_2$ (436 nm) increased, leading to $sp^2$-graphization into the CNT structure, leading to improvement of field emission property of CNTs. In the $CO-NH_3$ system, the trend is completely reversed. Attributing to the atomic oxygen for helping the graphitization of carbon, CNTs could be grown under the flow rate of CO (180 sccm)-$NH_3$ (10 sccm). Through these results, we suggest the growth mechanism in our system.

  • PDF

Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites

  • Lee, Young Sil;Yoon, Kwan Han
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.86-92
    • /
    • 2015
  • Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.

Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample (연소중 미분탄의 발광 분석 및 입자 채집 관찰)

  • Kim, Dae-Hee;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

Excretory-Secretory Products of Trichomonas vaginalis Cause Apoptosis in Mouse Sperm in Vitro

  • Keum, Jihyun;Roh, Jaesook;Ryu, Jae-Sook;Ryu, Ki-Young
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.357-360
    • /
    • 2022
  • Excretory-secretory products (ESP) of T. vaginalis have been shown to inhibit sperm motility, viability, and functional integrity, leading to a decreased fertilization rate in vitro. This study investigated whether T. vaginalis induce apoptosis and ultrastructural changes of sperm using flow cytometry and electron microscopy. Incubation of sperm with T. vaginalis ESP increased phosphatidylserine externalization and DNA fragmentation, and decreased mitochondrial membrane potential. Transmission electron microscopy of sperm incubated with ESP revealed abnormal features such as distorted heads, broken necks, and acrosomes exocytosis. This is the first report that demonstrates a direct impact of T. vaginalis ESP on sperm apoptosis and architecture in vitro.

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.