• Title/Summary/Keyword: Direct current sputtering

Search Result 81, Processing Time 0.031 seconds

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films (스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향)

  • Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

A Study on the standardize the characteristic evaluation of DC magnetron sputtered silver coatings for engineering purposes (D.C. magnetron sputter를 이용한 Ag layer 건식 도금층의 특성 평가 국제 표준화에 대한 연구)

  • Gyawali, Gobinda;Choi, Jinhyuk;Lim, Tae Kwan;Jung, Myoung Joon;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.249-249
    • /
    • 2015
  • Silver films have been of considerable interest for years due to their better performance relative to other metal films for engineering applications. A series of multi-layer silver coatings with different thickness (i.e. 0.3 um to 1.5 um) were prepared on Aluminium substrate containing copper undercoat by direct current (DC) magnetron sputtering method. For the comparative purpose, similar thickness silver coatings were prepared by electrolytic deposition method. Microstructural, morphological, and mechanical characteristics of the silver coatings were evaluated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Surface roughness test, microhardness test and nano-scratch test. From the results, it has been elucidated that the silver films prepared by DC magnetron sputtering method has superior properties in comparison to the wet coating method. On the other hand, DC magnetron sputtering method is relatively easier, faster, eco-friendly and more productive than the electrolytic deposition method that uses several kinds of hazardous chemicals for bath formulation. Therefore, a New Work Item Proposal (NWIP) for the test methods standardization of DC magnetron sputtered silver coatings has recently been proposed via KATS, Korea and a NP ballot is being progressed within a technical committee "ISO/TC107-metallic and other inorganic coating".

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Nanostructured Alloy Electrode for use in Small-Sized Direct Methanol Fuel Cells (소형 직접 메탄올 연료전지를 위한 나노 합금 전극)

  • Park Gyeong Won;Choi Jong Ho;Park In Su;Nam Woo Hyeon;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.83-88
    • /
    • 2003
  • PtRu alloy and $PtRu-WO_3$ nanocomposite thin-film electrodes for methanol electrooxidation were fabricated by means of a sputtering method. The structural and electrochemical properties of well-defined PtRu alloy thin-film electrodes were characterized using X-ray diffraction, Rutherford backscattering spectroscopy. X-ray photoelectron spectroscopy, and electrochemical measurements. The alloy thin-film electrodes were classified as follows: Pt-based and Ru-based alloy structure. Based on structural and electrochemical understanding of the PtRu alloy thin-film electrodes, the well-controlled physical and (electro)chemical properties of $PtRu-WO_3$, showed superior specific current to that of a nanosized PtRu alloy catalyst, The homogeneous dispersion of alloy catalyst and well-formed nanophase structure would lead to an excellent catalytic electrode reaction for high-performance fuel cells. In addition, the enhanced catalytic activity in nanocomposite electrode was found to be closely related to proton transfer in tungsten oxide using in-situ electrochemical transmittance measurement.

  • PDF

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds (나노 금속복합체의 박과 작물 종자 분리균에 대한 항균효과)

  • Kim, Sang Woo;Gwon, Byeong Heon;Ju, Han Jun;Adhikari, Mahesh;Park, Mi-ri;Song, Seok-Kyun;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.

A Study of Characteristic based on Working Pressure of ITO Electrode for Display (디스플레이용 ITO 전극의 동작 압력에 따른 특성 연구)

  • Kim, Hae-Mun;Park, Hyung-Jun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.392-397
    • /
    • 2016
  • In this paper, Characteristics of the ITO thin film deposited were analyzed using DC magnetron sputtering in order to investigate the deposition conditions of ITO thin film for transparent electrode. The experiment conditions were atmospheric pressure from 1 to 3[mTorr] with 1 [mTorr] step, bias electric voltage ranged from 260[V] to 330[V] with 10[V] step. The transmittance, refractive index and surface and cross-sectional shape of the deposited thin film were measured with an UV.-VIS. spectrophotometer, ellipsometer and SEM. Such condition as 1~2[mTorr] and near 300[V] voltage the transmittance was over 90[%] and the refractive index more than 2. Therefore, it was confirmed that the appropriate condition for making a highly transparent conductive electrode.

Influence of Ag Thickness on the Properties of TiO2/Ag/TiO2 Trilayer Films (Ag 중간층 두께에 따른 TiO2/Ag/TiO2 박막의 광학적 특성 변화)

  • Kim, So-Young;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Sun-Kyung;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.63-67
    • /
    • 2015
  • $TiO_2/Ag/TiO_2$ trilayer films were deposited with radio frequency (RF) and direct current (DC) magnetron sputtering onto the glass substrate to consider the influence of Ag interlayer on the optical properties of the films. The thickness of $TiO_2$ films was kept at 24 nm, while the thickness of Ag interlayer was varied as 5, 10, 15, and 20 nm. As-deposited $TiO_2$ single layer films show the optical transmittance of 66.7% in the visible wave-length region and the optical reflectance of 16.5%, while the $TiO_2$ films with a 15 nm thick Ag interlayer show the enhanced optical transmittance of 80.2% and optical reflectance of 77.8%. The carrier concentration was also influenced by Ag interlayer. The highest carrier concentration of $1.01{\times}10^{23}cm^{-3}$ was observed for a 15 nm thick Ag interlayer in $TiO_2/Ag/TiO_2$ films. The observed result means that an optimized Ag interlayer in $TiO_2/Ag/TiO_2$ films enhanced the structural and optical properties of the films.

The Study of Sputtered SiGe Thin Film Growth for Photo-detector Application (광검출기 응용을 위하여 스퍼터된 미세결정 SiGe 박막성장 연구)

  • Kim, Do-Young;Kim, Sun-Jo;Kim, Hyung-Jun;Han, Sang-Youn;Song, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.439-444
    • /
    • 2012
  • For the application of photo-detector as active layer, we have studied how to deposit SiGe thin film using an independent Si target and Ge target, respectively. Both targets were synthesized by purity of 99.999%. Plasma generators were generated by radio frequency (rf, 13.56 MHz) and direct current (dc) power. When Ge and Si targets were sputtered by dc and rf power, respectively, we could observe the growth of highly crystalline Ge thin film at the temperature of $400^{\circ}C$ from the result of raman spectroscopy and X-ray diffraction method. However, SiGe thin film did not deposit above method. Inversely, we changed target position like that Ge and Si targets were sputtered by rf and dc power, respectively. Although Ge crystalline growth without Si target sputtering deteriorated considerably, the growth of SiGe thin film was observed with increase of Si dc power. SiGe thin film was evaluated as microcrystalline phase which included (111) and (220) plane by X-ray diffraction method.