• 제목/요약/키워드: Direct coating method

검색결과 84건 처리시간 0.025초

바이어스 인가 방식에 의한 컬러 화강석 제조에 관한 연구 (A Study on the Color Granite Fabrication by Bias Enhancement Method)

  • 박종국;신홍직;최원석;한재찬
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.247-249
    • /
    • 2016
  • In this study, we investigated the color change of the normal light gray granite as the high value color granite. By coating the metal catalyst liquid on the surface of granite stone, the metal particles were penetrated into the granite and the color of granite was changed permanently through the annealing treatment. To increase penetration depth into the granite, we used DC (direct current) bias. Two kinds of bias were used such as DC bias and pulse DC bias. And the penetration time was changed as 30 and 60 min. In all cases, the color granite were successfully obtained. Regardless of the catalyst reaction time, the penetration depth was increased by using the bias treatment. We obtained a penetration depth of 21 mm with the DC pulse bias during 60 min.

이산화티타늄 광촉매를 이용한 총유기탄소 분석방법 (The method for total organic carbon analysis employing TiO2 photocatalyst)

  • 박범근;김성미;이영진;백종후;신정희
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.320-325
    • /
    • 2021
  • Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods are conventional analytical methods to analyze water quality. Both of these methods are technically indirect measurement methods, require complicated preconditions, and are time-consuming. On the other hand, the total organic carbon (TOC) method is a direct and fast measurement method which is more intuitive and accurate than the BOD and COD methods. However, general TOC analysis methods involve complicated processes and high power consumption owing to the process of phase transition from liquid to gas by a high-temperature heater. Furthermore, periodic consumables are also required for the removal of inorganic carbon (IC). Titanium dioxide (TiO2) is one of the most suitable photocatalysts for simple processes. Its usage involves low power consumption because it only reacts with the organic carbon (OC) without the requirement of any other reagents and extra processes. We investigated a TiO2 photocatalyst-based TOC analysis for simple and affordable products. TiO2-coated fiber substrate maintained under carbon included water was exposed to ultraviolet (UV) radiation of wavelength 365 nm. This method is suitable for the real-time monitoring of water pollution because of its fast reaction time. Its linear property is also sufficient to match the real value.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사 (Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor)

  • 전도만;나병기;이영우
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.901-908
    • /
    • 2018
  • 흑연은 리튬이온전지에 사용 되는 대표적인 음극활물질이다. 그러나 최대 이론 용량이 $372mA\;h\;g^{-1}$으로 제한되기 때문에 고용량의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 실리콘의 최대 이론 용량은 $4200mA\;h\;g^{-1}$으로 흑연보다 높은 값을 나타내지만 부피 팽창이 400%로 크기 때문에 음극 소재 활물질로 바로 적용하기에는 적합하지 않다. 따라서 부피 팽창으로 인한 방전 용량의 감소를 최소화하기 위해 건식 방법으로 실리콘을 분쇄 하여 기계적 응력 및 반응상의 체적 변화를 감소시키고 입도 제어 된 실리콘 입자에 탄소를 코팅하여 체적의 변화를 억제하였다. 그리고 탄소 섬유를 입자 표면에 실타래처럼 성장시켜 2차적으로 부피 팽창을 제어하고 전기전도성을 개선하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 전기화학적 특성을 평가 하였다. 본 연구에서는 실리콘의 수명 특성을 향상시켜 음극 소재 활물질로 사용 할 수 있는 합성 방법에 대하여 알아보았다.

국내원전에 매설된 콜타르 코팅 배관의 음극방식과 FEM법을 이용한 방식성능 시뮬레이션 (Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method)

  • 장현영;김기태;임부택;김경수;김재원;박흥배;김영식
    • Corrosion Science and Technology
    • /
    • 제16권3호
    • /
    • pp.115-127
    • /
    • 2017
  • Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

가열 롤에서 플라즈마 TiO2-NiCr 용사피막의 특성 (Characteristics of Plasma Sprayed TiO2-NiCr Conductive Heating Roll Coatings)

  • 강태구;진민석;고영봉;김태형;조상흠;박정식;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.28-34
    • /
    • 2007
  • The heating unit of direct heating method manufactured as the plasma spray coating of $TiO_2/NiCr$ conductive heating material on the surface of heating unit in order to improve the disadvantages of indirect heating method. $TiO_2$ and NiCr (80wt.%Ni-20wt.%Cr) that had the properties of conduction and heating was chosen for the conductive heating material. The compositions of the composite powders were studied $TiO_2-30wt.%NiCr\;and\;TiO_2-10wt.%NiCr$. As the heating temperature was increased, the hardness of heating layer was increased because of the fine microstructure and the decrease of porosity. The adhesion strength was decreased for coarsening and connection of voids in the insulation layer, and the electrical resistivity of heating layer was increased for fine crack formation and growth. In this study, the best efficient sprayed coatings with heating unit was concluded as the plasma sprayed $TiO_2-10wt.%NiCr$ coatings that was heat treated at $300^{\circ}C$.

직접 인발 시험을 이용한 에폭시 도막 철근의 부착 특성 (Bond Behaviors of Epoxy Coated Reinforcements Using Direct Pull-out Test)

  • 김지상;이상현
    • 한국건설순환자원학회논문집
    • /
    • 제5권3호
    • /
    • pp.298-304
    • /
    • 2017
  • 철근 콘크리트 구조물에 있어서 철근의 부식은 구조물의 내구성 측면에서 심각한 문제를 야기하고 있으며, 이에 대한 효율적인 대책의 하나로 에폭시 도막 철근의 사용이 제시되고 있으나, 철근 표면의 에폭시 도막으로 인하여 콘크리트와의 부착 성능이 저하되는 문제점이 발생하게 된다. 이를 정확히 평가하고 대안을 제시하기 위한 기초단계로 이 연구에서는 현재 국내에서 생산되는 에폭시 도막 철근의 직접 부착 실험을 수행하고 부착성능을 평가하였다. 에폭시 도막 철근의 부착 실험은 지름 10, 19, 29mm의 철근에 대하여 콘크리트 피복두께를 철근 지름의 1, 2, 3, 4.5배로 하여 수행되었다. 총 66개의 시편이 RILEM 시험법에 따라 실험이 진행 되었는데, 에폭시 도막 철근의 지름이 증가할수록 에폭시 도막 철근과 일반철근의 부착응력 차이가 증가하였으며, 도막두께의 영향은 뚜렷하지 않았다. 또한, 에폭시 도막 철근의 부착강도는 KS 표준에 제시된 제한값인 일반 철근 대비 85%의 부착성능을 나타내는 것을 확인할 수 있었다. 이 실험의 결과에 근거하여 평형방정식에 기초한 에폭시 도막 철근의 정착길이 증가계수를 수정한 새로운 산정식을 제안하였다.

Growth and Yield Variation of Clay-coated Rice Seeds in Direct Seeding Culture on Dry Paddy

  • Choi, Weon-Young;Park, Hong-Kyu;Ku, Bon-IL;Mo, Young-Jun;Choi, Min-Gyu;Kim, Sang-Su;Kim, Chung-Kon
    • 한국작물학회지
    • /
    • 제53권3호
    • /
    • pp.292-296
    • /
    • 2008
  • Clay-coated rice seeds (clay-coated seeds A and B) were directly sown on dry paddy and their growth and yield were compared with the normal drill-sown seeds on dry flat paddy. In clay-coated seeds, germination was 1 day earlier and the emergence rate was higher up to 5% than that of normal drill-sown seeds. But the apparent number of seedling stand per $m^2$ was lower than that of normal drill-sown seeds, which is due to the smaller amount of seeding in clay-coated seeds. At the early growth stage, the plant height of clay-coated seeds A was taller than that of drill-sown seeds, while the plant height of clay-coated seeds B was 0.7 cm shorter than that of drill-sown seeds. At the late growth stage, however, the difference was insignificant in both cases. The maximum tillering stage was 10 days earlier in drill-sown seeds. Lodging index was the lowest in clay-coated seeds B and there was no difference between clay-coated seeds A and drill-sown seeds. The ratio of stem base weight, culm diameter and culm wall thickness were higher in clay-coated seeds, while the lower internodes (4th, 5th and 6th) length was shorter in claycoated seeds than in drill-sown seeds. In clay-coated seeds, the number of panicle per $m^2$ was smaller, while the number of spikelet per panicle was a little larger than in drill-sown seeds. The rate of ripened grain and brown rice 1,000 grain weight were lower in the clay-coated seeds, thus the yield was $98{\sim}99%$ level of drill-sown seeds. Considering that the amount of seeding in clay-coated seeds was two-thirds of that in drill-sown seeds, it is expected that clay coating method could become an additional technique for direct seeding cultivation.