• Title/Summary/Keyword: Direct Power Injection

Search Result 122, Processing Time 0.025 seconds

Effects of intake flows on spray structure of a high pressure multi-hole injector in a second generation direct-injection gasoline engine (제 2세대 직접분사식 가솔린 기관에서 고압다공연료분사기의 분무 형상에 대한 흡기유동의 영향)

  • Kim, S.S.;Kim, S.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • 제 2세대 직접분사식 가솔린 기관에서 6공 연료분사기의 연료분무특성을 관찰하였다. 실험에 사용한 직접분사식 가솔린 기관은 2개의 흡입밸브와 2개의 배기밸브를 갖는 텀블형 Spray Guided 연소실과 Quartz로 제작된 실린더 라이너와 실린더 헤드 창으로 구성되어 있다. 선회유동을 유도하기 위하여 흡입매니폴드에 선회유동 제어밸브를 부착하였다. 2차원 Mie 스캐터링 기법을 이용하여 연료분사시기, 연료분사압력과 실린더 내 유동 및 냉각수 온도가 연료분무에 미치는 영향을 관찰하였다. 실험결과로는 흡기과정동안 흡기 선회유동은 분사된 연료의 공간적 분포에 크게 작용하였고, 압축과정동안에는 텀블 및 선회유동의 영향이 흡기과정에 비해 크지 않음을 확인하였다. 또한 성층연소를 위해서 압축과정에서 연료를 분사하는 경우 고압의 연료분사압은 분무도달거리의 성장을 촉진시키나 상승하는 피스톤과 이로 인한 실린더 압력의 상승으로 분무도달거리의 성장이 억제됨을 확인할 수 있었다.

  • PDF

Flow Characteristics of Oil Jet for Cooling a Piston (피스톤 냉각용 엔진오일 제트 유동특성)

  • Li, L.;Lee, J.H.;Jung, H.Y.;Kim, J.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-55
    • /
    • 2006
  • An efficient cooling system for a piston of an automotive engine is very important. Therefore a large capacity gasoline engine or diesel engine has adopted the direct injection cooling system to increase its cooling efficiency. In this direct cooling system, an cooling oil is injected to a piston directly using an oil jet and this cooling oil flows through an oil gallery inside the piston. Flow rate and injection accuracy of this cooling oil are very important because these are main factors that have influence on its efficiency. The purpose of this study is to understand the changes of flow characteristics with various curvatures and diameters of an outlet nozzle and to check whether engine oil enters into the oil gallery well or not. From this study, we found that secondary flow was formed in a curved part of jet due to centrifugal force and irregular flow pattern appeared at the jet outlet. This pattern has influence on flow characteristics of engine oil entering the gallery. These simulation results have a good agreement with experiments.

  • PDF

A Study on the Effect of Compression Ratio and EGR on the Partial Premixed Diesel Compressed Ignition Combustion Engine Applied with the Split Injection Method (2단 분사방식을 적용한 부분 예혼합 디젤압축착화연소엔진의 성능에 미치는 압축비 및 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kang, Woo;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-38
    • /
    • 2006
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition(HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. In addition, this study confirmed the possibility of securing optimum fuel economy emission reduction in the IMEP 8bar range(which could not be achieved with existing partially premixed combustion) through forced charging, exhaust gas recirculation(EGR), compression ratio change and application of DOC catalyst.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Study on the Fuel Vapor Distribution of the Stratified Charge in a DISI Engine by PLIF Technique (직분식 전기점화 엔진에서 PLIF기법에 의한 성층 혼합기의 분포특성 연구)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • The spatial fuel distribution of the stratified charge of a high pressure 6-hole injector was examined in a single cylinder optical direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF(Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played more effective role in the spatial fuel distribution of the stratified charge than the swirl flow during the compression stroke and the fuel distribution area increased due to the activation of the fuel vaporization by the increase of the coolant temperature. But, the increase of the fuel supplying pressure could not change the pattern of the fuel vapor distribution against the expectation.

  • PDF

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

The Effect of Scavenging pressure on Performance Characteristics in Two-Stroke Diesel Engine (2행정 디젤기관의 소기압력이 성능특성에 미치는 영향)

  • Kim, Gi-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • Compression ignition diesel engine can reduce carbon emission than gasoline engine in case of high efficiency, output and durability. So, compression ignition diesel engine is used in various fields such as automobiles, industries and so on. Due to reducing of emission exhaust by Developing of injection and combustion type of diesel engine, emission of pollution substance is developed compared the past. Moreover, its efficiency and reduce of carbon emission is better than gasoline engine and it is used in power source of industries, transports and others because of its high efficiency and durability nowadays. In this study, we experiment by making and designing of compression ignition diesel engine witch has air-cooling, 2 cylinder and 2 strokes.

Evaluation of EM Susceptibility of an PLL on Power Domain Networks of Various Printed Circuit Boards (다양한 PCB의 전원 분배 망에서의 PLL의 전자기 내성 검증)

  • Hwang, Won-Jun;Wee, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.74-82
    • /
    • 2015
  • As the complexity of an electronic device and the reduction of its operating voltage is progressing, susceptibility test of the chip and module for internal or external noises is essential. Although the immunity compliance of the chip was served with IEC 62132-4 Direct Power Injection method as an industry standard, in fact, EM immunity of the chip is influenced by their Power Domain Network (PDN). This paper evaluates the EM noise tolerance of a PLL and compares their noise transfer characteristics to the PLL on various PCB boards. To make differences of the PDNs of PCBs, various PCBs with or without LDO and with several types of capacitors are tested. For evaluation of discrepancies between EM characteristics of an IC only and the IC on real boards, the analysis of the noise transfer characteristics according to the PDNs shows that it gives important information for the design having robust EM characteristics. DPI measurement results show that greatly improved immunity of the PLL in the low-frequency region according to using the LDO and a frequency change of the PLL according to the DPI could also check with TEM cell measurement spectrum.

DTMOS Schmitt Trigger Logic Performance Validation Using Standard CMOS Process for EM Immunity Enhancement (범용 CMOS 공정을 사용한 DTMOS 슈미트 트리거 로직의 구현을 통한 EM Immunity 향상 검증)

  • Park, SangHyeok;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.917-925
    • /
    • 2016
  • Schmitt Trigger logic is a gate level design method to have hysteresis characteristics to improve noise immunity in digital circuits. Dynamic Threshold voltage MOS(DTMOS) Schmitt trigger circuits can improve noise immunity without adding additional transistors but by controlling substrate bias. The performance of DTMOS Schmitt trigger logic has not been verified yet in standard CMOS process through measurement. In this paper, DTMOS Schmitt trigger logic was implemented and verified using Magna $0.18{\mu}m$ MPW process. DTMOS Schmitt trigger buffer, inverter, NAND, NOR and simple digital logic circuits were made for our verification. Hysteresis characteristics, power consumption, and delay were measured and compared with common CMOS logic gates. EM Immunity enhancement was verified through Direct Power Injection(DPI) noise immunity test method. DTMOS Schmitt trigger logics fabricated using CMOS process showed a significantly improved EM Immunity in 10 M~1 GHz frequency range.

Virtual Signal Injected MTPA Control for DTC Five-Phase IPMSM Drives

  • Liu, Guohai;Yang, Yuqi;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.956-967
    • /
    • 2019
  • This paper introduces a virtual signal injected maximum torque per ampere (MTPA) control strategy for direct-torque-controlled five-phase interior permanent magnet synchronous motor (IPMSM) drives. The key of the proposed method is that a high frequency signal is injected virtually into the stator flux linkage. Then the responding stator current is calculated and regulated to compensate the amplitude of the flux linkage. This is done according to the relationship between the stator current and the stator flux linkage. Since the proposed method does not inject any real signals into the motor, it does not cause any of the problems associated with high-frequency signals, such as additional copper loss and extra torque ripple. Simulation and experimental results are offered to verify the effectiveness of the proposed method.