• Title/Summary/Keyword: Direct Interface with Equipment

Search Result 9, Processing Time 0.027 seconds

RF COMPATIBILITY TEST BETWEEN KOMPSAT AND TTC STATION

  • Ahn, Sang-Il;Choi, Hae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Results of RF compatibility test between KOMPSAT(Korea Multi-Purpose SATellite) and TTC(Tracking, Telemetry, and Command) station are described. S/C(Spacecreft) RF Test, telemetry test, command test, ranging test, and tracking receiver test were performed with respect to pass/fail criteria. To provide physical RF interface between KOMPSAT and TTC equipment, direct low cable and antenna-to-antenna interface were implemented. Through RF compatibility test, it was fully demonstrated that KOMPSAT and TTC equipment are functionally workable.

  • PDF

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.

Application of Data Acquisition System for MES (MES 구현을 위한 현장정보 수집시스템의 적용 예)

  • Lee, Seung-Woo;Lee, Jai-Kyung;Nam, So-Jung;Park, Jong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1063-1070
    • /
    • 2011
  • The manufacturing execution system (MES) for product production handles different production processes according to the product characteristics and different types of data according to the process being considered. For efficiently providing the data pertaining to production equipment to production systems such as the MES, data collection through the equipment interface is required for obtaining the production data pertaining to field equipment. In this paper, a method is proposed for collecting the production data through the equipment interface in order to collect the various types of production-equipment data from the field. The proposed method is applied to a real manufacturing system to verify its efficiency. A more powerful MES can be constructed with a data acquisition system that acquires the status data at the shop-floor level.

Slope Stability of Waste Landfill Using Textured Geomembrane (Textured 지오맴브레인을 적용한 폐기물 매립장의 사면 안정성 연구)

  • 신은철;윤석호;심진섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.141-144
    • /
    • 2000
  • The slope stability of waste landfill has been a problem in domestic and foreign countries. Waste landfills are being constructed in a reclaimed land or mountainous area. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetic liners in there. The large size direct shear test(30cm x 30cm) equipment was used to determine the interface friction angles between CCLs and soil & geomembranes. The centrifuge model tests were performed to investigate the slope stability with considering various geosynthetic liners conditions and degree of slope. The results of centrifuge model test indicate that the degree of saturation of GCL, roughness of geomembrane, and slope of landfill have greatly influenced on the slope stability of solid waste landfill.

  • PDF

An Development of Leakage Current Sensing Module of the System on Chip Type Under Consideration of Electromagnetic Interface in Power Trunk Line (전력간선에서의 전자파 장애를 고려한 원칩형 누설전류 원격 검출단말기의 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.377-384
    • /
    • 2009
  • In this paper, leakage current sensing module of SoC(System on Chip)type and real time monitoring system under consideration of electromagnetic interface in power trunk line are developed. The first, leakage current sensing module of SoC type under consideration of electromagnetic interface is developed, and the developed sensing module of SoC type is composed of leakage sensing part, power supply part, interface part, communication part, AD(Alternating current to Direct current)convert part and amplification part. And also the electromagnetic compatibility is evaluated by conduction and radiation of EMI(Electromagnetic Interference) for developed sensing module. The developed system can have confidence, stability and do energy saving under mixed electric circumstance of the low voltage communication device and high voltage equipment. The second, the real time remote monitoring system is developed using designed wire and wireless communication module with leakage current sensing module of SoC type. The developed real time remote monitoring system can monitor sensing state, occurrence state of leakage current and alarm for each step etc.. And the device configuration, PCB layout for leakage current sensing module of system on chip type and the experiment configuration in consideration of EMI are presented. Also the measurement results of conduction and radiation for EMI are presented.

An Efficient Inter-Cell Interference Mitigation Scheme for Proximity Service in Cellular Networks (셀룰러 망에서 Proximity Service를 위한 효율적인 셀 간 간섭 완화 방안)

  • Kim, Cha-Ju;Min, Sang-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.100-113
    • /
    • 2018
  • The Proximity Service, which is one of the most popular network capacity improvement methods, uses the frequency reuse in order to increase the frequency efficiency. As a result, inter-cell interference between cellular and proximity service users occurs at a cell edge. In this paper, we proposed a mitigation scheme for inter-cell interference, where we suggested a new function of and eNB with ProSe function exchanging information about ProSe parameters and ProSe user equipment with neighboring cells via the X2 interface. As the first step, the resource which did not cause the inter-cell interference problem were pre-allocated through the frequency sensing in the ProSe direct discovery. As the next step, the inter-cell interference problem was solved by reallocating appropriate resources based on the ProSe application code, the ProSe application QoS, the ProSe application ID and validity timer in ProSe direct communication.

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

Development of Hardware for the Architecture of A Remote Vital Sign Monitor (무선 체온 모니터기 아키텍처 하드웨어 개발)

  • Jang, Dong-Wook;Jang, Sung-Whan;Jeong, Byoung-Jo;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2549-2558
    • /
    • 2010
  • A Remote Vital Sign Monitor is an in-home healthcare system designed to wirelessly monitor core-body temperature. The Remote Vital Sign Monitor provides accuracy and features which are comparable to hospital equipment while minimizing cost with ease-of-use. It has two parts, a bandage and a monitor. The bandage and the monitor both use the Chipcon2430(CC2430) which contains an integrated 2.4GHz Direct Sequence Spread Spectrum radio. The CC2430 allows Remote Vital Sign Monitor to operate at over a 100-foot indoor radius. A simple user interface allows the user to set an upper temperature and a lower temperature that is monitored with respect to the core-body temperature. If the core-body temperature exceeds the one of two defined temperatures, the alarm will sound. The alarm is powered by a low-voltage audio amplifier circuit which is connected to a speaker. In order to accurately calculate the core-body temperature, the Remote Vital Sign Monitor must utilize an accurate temperature sensing device. The thermistor selected from GE Sensing satisfies the need for a sensitive and accurate temperature reading. The LCD monitor has a screen size that measures 64.5mm long by 16.4mm wide and also contains back light, and this should allow the user to clearly view the monitor from at least 3 feet away in both light and dark situations.