• Title/Summary/Keyword: Direct Emissions

Search Result 353, Processing Time 0.034 seconds

Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines (다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향)

  • Oh, Jin-Woo;Park, Cheol-Woong;Kim, Hong-Suk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Currently, in order to meet the reinforced emissions regulations for harmful exhaust gas including carbon dioxide ($CO_2$) as a greenhouse gas, technologies for reducing $CO_2$ emission and fuel consumption are being developed. Gasoline direct injection (GDI) systems have the advantage of improved fuel economy and higher power output than port fuel injection gasoline engine systems. The aim of this study is to examine the performance and emission characteristics of a lean burn GDI engine equipped with spray-guided-type combustion system. Stable lean combustion was achieved with a late fuel injection strategy under a constant operating condition. Further improvement in specific fuel consumption is possible with the introduction of multiple fuel injection strategies, which also increases hydrocarbon (HC) and nitrogen oxide ($NO_x$) emissions and decreases carbon monoxide (CO) emission.

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

An e-SAM Approach to the Analysis of Energy Consumption and CO2 Emissions in Korean Industry (환경사회계정행렬(e-SAM)을 이용한 산업활동의 환경 파급효과 분석)

  • Park, Chang-Gui;Lee, Kihoon
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.101-123
    • /
    • 2013
  • This research aims to find out the existence of considerable induced effect that the conventional I-O model cannot. First, we construct an environmental Social Accounting Matrix for Korea by combining statistics on the Korean GDP and I-O with physical data on the fossil energy consumption and $CO_2$ emissions. The impacts of productive activities on fossil energy consumption and $CO_2$ emissions are evaluated by calculating the e-SAM multipliers. By applying decomposition technique further, we get direct, indirect, and induced effects of production activities by industry. The result of decomposing the e-SAM shows that while the direct effect of the electricity industry is large, its indirect effect is very small. In the case of the primary metal industry, both the direct and the indirect influence of this industry were very large. On the contrary, in case of the service industry, the induced effect of fossil energy consumption was as high as 50% of the gross effect. These results suggest that different energy policies should be established for different industries. Also, the findings show the e-SAM model is better than I-O model in analyzing implications of policies on energy use in the economy.

  • PDF

Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

  • Lee, Jong Tae;Son, Jihwan;Kim, Jounghwa;Choi, Yongjoo;Yoo, Heung-Min;Kim, Ki Joon;Kim, Jeong Soo;Park, Sung Wook;Park, Gyutae;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Particulate matter (PM) in the atmosphere has wide-ranging health, environmental, and climate effects, many of which are attributed to fine-mode secondary organic aerosols. PM concentrations are significantly enhanced by primary particle emissions from traffic sources. Recently, in order to reduce $CO_2$ and increase fuel economy, gasoline direct injected (GDI) engine technology is increasingly used in vehicle manufactures. The popularization of GDI technique has resulted in increasing of concerns on environmental protection. In order to better understand variations in chemical composition of particulate matter from emissions of GDI vehicle versus a port fuel injected (PFI) vehicle, a high time resolution chemical composition of PM emissions from GDI and PFI vehicles was measured at facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Continuous measurements of inorganic and organic species in PM were conducted using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The HR-ToF-AMS provides insight into non-refractory PM composition, including concentrations of nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol, and organic mass with 20 sec time resolution. Many cases of PM emissions during the study were dominated by organic and nitrate aerosol. An overview of observed PM characteristics will be provided along with an analysis of comparison of GDI vehicle versus PFI vehicle in PM emission rates and oxidation states.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

A Study on Effect of a Combined Plasma EGR System upon Soot CO and $CO_2$ Emissions in Turbo Intercooler Common-rail Diesel Engines (터보 인터쿨러 커먼레일 디젤기관의 매연, CO 및 $CO_2$ 배출물에 미치는 플라즈마 EGR 조합시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Ku, Young-Jin;Lee, Bong-Sub;Youn, Il-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. In this study, the characteristics of soot, CO and $CO_2$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR and non-thermal plasma reactor system are used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce soot and THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that soot emissions with increasing EGR rate are increased, but are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load. Results also show that CO and $CO_2$ emissions are increased as EGR rate is elevated, and CO emissions are increased, but $CO_2$ emissions are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.