OA2) Direct Measurement System for N₂O Emissions from NH₃-SCR Reaction over V₂O₅/TiO₂-Based Catalysts Yong-Hyun Lee, Moon Hyeon Kim*, Sung-Won Ham¹ Department of Environmental Engineering, Daegu University, 15 Naeri, Jillyang, Gyeongsan 712-714, Korea Department of Display and Chemical Engineering, Kyungil University, 33 Buho, hayang, Gyeongsan 712-701, Korea ### 1. Introduction Nitrous oxide (N_2O) having global warming potential value much greater, by 310 times, than that of CO_2 [1], would be significantly produced from NH_3 -SCR De NO_x (selective catalytic reduction of NO_x by NH_3) processes [2] that are widely used for abating NO_x from fossil fuel-fired power plants. The use of grab sampling for N_2O analysis gives secondary formation in the sample during transport and storage, because of the simultaneous presence of NO, SO_2 and H_2O in the sample [3]. Thus, an on-line analysis technique is required to quantitatively determine the extent of the production of N_2O at on-site SCR units. # 2. On-line N₂O measurement system development To adequately simulate N_2O emissions from many commercial NH_3 -SCR processes, a continuous flow-type fixed-bed reactor system has been made [4]. The homogenizer equipped with this reactor system was specially designed to facilitate complete mixing between feed gases, such as NO, NH_3 , O_2 , and N_2O , in flowing He. A 180-mesh glass frit was inserted into the Pyrex reactor to hold fine powder samples. Pressures less than 5.5 psi were indicated for this test reactor into which a fine powder sample of a commercial V_2O_5 - WO_3 / TiO_2 catalyst was charged to be ca. 0.52 g under a pure He flow of 1,500 cm³/min, corresponding to a gas hourly space velocity of 110,000 h⁻¹. A Nicolet Model 6700 FTIR spectrophotometer with a specially-designed gas cell and data processing software setups was installed for direct measurements of N₂O formation during NH₃-NO-O₂ reaction with commercial SCR catalysts (Fig. 1). The gas cell has a volume of 0.75 L, and a pathlength of max. 10 m that can be adjusted using the micrometer feedthrough adjustment assembly. The whole surface of the wall inside the multipath gas cell was coated with Ni and Au to allow N₂O measurements even under harsh conditions. The inside of the gas cell was designed to easily clean up via frequent temperature cycling in high vacuum, when contaminated by $\mathrm{NH_4}^{+1}$ salts such as ammonium nitrates and (bi)sulfates. The outer surface of the cylindrical stainless steel body of the gas cell was uniformly winded by heating wires that are able to heat it up to 200°C at which no condensation and deposition of reactants and their derivative salts for SCR reaction may occur. Fig. 1. On-line N₂O measurement system with a multipath gas cell. ### 3. Gases impurities determination and system validity tests Ultrahigh purity N₂O, NH₃, O₂, He (99.999%) and NO (99.99%) were employed here, but a level of impurities, such as H₂O, CO₂, CO, CH₄, and other trace species, present in each cylinder gas was determined at the Specialty Gases Analysis Center, Scott Specialty Gases USA as a unit of ppm to acquire possible interference to direct N₂O measurements. All the impurities were less than 1.5 ppm, depending on the pure gases, and 10.3 ppm of N₂O as an impurity was detected for the pure NO gas, which is due to auto-oxidation reaction between NO gases even in the aluminum cylinder. The instrument with the gas cell was calibrated using a flowing mixture consisting of different ppms of N₂O in ultrahigh purity He. This system had a detection limit of 0.3 ppm for N₂O based on the most intense peak at 2237 cm⁻¹. Substantial presence of 5% O₂ in a flowing mixture of N₂O/He gave no change in N₂O concentrations, as shown in Fig. 2. Consequently, this IR-based on-line N₂O measurement system will allow us continuous monitoring and measurements for N₂O levels produced during the course of SCR reaction over commercial TiO₂-supported V₂O₅ catalysts. Fig. 2. Typical gas-phase spectrum for N₂O and its calibration using on-line IR analysis system.. ### 4. Conclusions An on-line IR-based system with a multipath gas cell was developed and had a detection limit of tens of ppbs. The gas cell with this system is available for directly measuring N_2O emissions from NH_3 -SCR reaction on V_2O_5/TiO_2 -based catalysts, because it has a strong tolerance to harsh conditions. ## Acknowledgment This study was supported by a partial grant-in-aid via ETEP Grant # R-2007-1-002-0. ### References - G. Centi, S. Perathoner, F. Vazzana, Chemtech 29 (1999) 48. - J.A. Martin, M. Yates, P. Avila, S. Suarez, J. Blanco, Appl. Catal. B 70 (2007) 330. - T. Hulgaard, K. Dam-Johansen, Environ. Prog. 11 (1992) 302. - K.H. Kim, Y.H. Lee, M.H. Kim, S.W. Ham, S.M. Lee, J.B. Lee, "Continuous Monitoring and Measurements for N₂O Emissions from NH₃-SCR DeNO_x Reaction on Commercial V₂O₅/TiO₂-based Catalysts," Proceedings of 5th International Conference on Environmental Catalysis, Aug. 31 Sept. 3, 2008, Belfast, UK, p. 450.