• Title/Summary/Keyword: Direct Current (DC)

Search Result 432, Processing Time 0.027 seconds

An Information Transmission Method of DC Switch Gear for Light Railway Vehicle using Communication Network (통신망을 이용한 경량전철용 직류배전반의 정보 전송방식)

  • Lee H.D.;Jeon Y.J.;Kim S.N.;Baek B.S.;Ryu S.P.;Seo K.D.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.953-955
    • /
    • 2004
  • This paper describes the information transmission method using communication networks between Remote Terminal Unit(RTU) and Protection and Control system(PCU) of the direct current switchgear for Light Railway Vehicle, and also represents the test result, which carried out in the laboratory. In this test, transmission signal waveform, polling time, response time and request/response frame were measured between RTU and PCU. The field test including the measurements of analog signal and status of the digital logic operation of PCU will be conducted in near future.

  • PDF

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

A Study on Development of High Efficiency PCS using in PEMFC Generation System (PEMFC 발전시스템용 고효율 PCS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Won-Seok;Jung, Do-Young;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.266-268
    • /
    • 2009
  • In this paper, authors deal with a power conditioning system (PCS) of high efficiency for a proton exchange membrane fuel cell (PEMFC) generation system. Fuel cells are a direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper studies on a novel PCS circuit topology of high efficiency using in PEMFC generation system The controlling switches in the PCS is operated to soft switching. Some digital simulation results and experimental results for the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

Thermal Characteristics of 600 W Brushless DC Motor under Axial Loading Condition (회전축 부하를 고려한 BLDC 모터의 열적 특성에 관한 실험 및 수치 해석적 연구)

  • Kwon, Hwabhin;Lee, Won-Sik;Kim, Gyu-Tak;Park, Heesung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.999-1005
    • /
    • 2016
  • A brushless direct current (BLDC) motor electronically performs rectification without brushes. It therefore does not have the typical mechanical friction contacts between the brushes and commutators. The BLDC motor has the advantages of high speed, low noise, and electronic noise reduction in addition to high durability and reliability. Therefore, it is mainly used in electric vehicles and electric equipment. However, iron loss and copper loss due to long-term use induce temperature increases in the motor, which reduces its performance and life. The temperatures of the stator and permanent magnet are predicted to be $62.3^{\circ}C$ and $32.2^{\circ}C$, respectively. This study shows the enhanced temperature distribution in a 600 W BLDC motor using unsteady and three-dimensional (3D) numerical investigations validated with experimental data.

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

Gain characteristics of SQUID-based RF amplifiers depending on device parameters

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Lee, S.K.;Chong, Y.;Oh, S.J.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.10-14
    • /
    • 2019
  • Radio-frequency (RF) amplifiers based on direct current (DC) superconducting quantum interference device (SQUID) have low-noise performance for precision physics experiments. Gain curves of SQUID RF amplifiers depend on several parameters of the SQUID and operation conditions. We are developing SQUID RF amplifiers for application to measure very weak RF signals from ultra-low-temperature high-magnetic-field microwave cavity in axion search experiments. In this study, we designed, fabricated and characterized SQUID RF amplifiers with different SQUID parameters, such as number of input coil turn, shunt resistance value of the junction and coupling capacitance in the input coil, and compared the results.

Structural and electrical properties of Ba(Sr,Ti)O3/K(Ta,Nb)O3 multilayer thin film for the application of electro-caloric devices

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Choi, Seungkeun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.603-608
    • /
    • 2019
  • In this study, the multilayered thin films of (Ba,Sr)TiO3/K(Ta,Nb)O3 were fabricated by the sol-gel and spin coating methods, and their structural and electrical properties were investigated. The specimen showed polycrystalline X-ray diffraction (XRD) characteristics with a tetragonal structure. The average grain size and film thickness for one coating were about 30~40nm and 60nm, respectively. The phase transition temperature of specimen was lower than 10 ℃. The dielectric constant and loss at 20 ℃ of the specimen coated six times were 1,231 and 0.69, respectively. The rate of change in dielectric constant at an applied direct current (DC) voltage of the six times coated thin films was 17.3%/V. The electrocaloric effect was the highest around the temperature at which the remanent polarization rapidly changed. When an electric field of 660kV/cm was applied to the triply coated thin films, the highest electrocaloric property of 4.41 ℃ was observed.

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

Non-invasive Brain Stimulation and its Legal Regulation - Devices using Techniques of TMS and tDCS - (비침습적 뇌자극기술과 법적 규제 - TMS와 tDCS기술을 이용한 기기를 중심으로 -)

  • Choi, Min-Young
    • The Korean Society of Law and Medicine
    • /
    • v.21 no.2
    • /
    • pp.209-244
    • /
    • 2020
  • TMS and tDCS are non-invasive devices that treat the diseases of patients or individual users, and manage or improve their health by applying stimulation to a brain through magnetism and electricity. The effect and safety of these devices have proved to be valid in several diseases, but research in this area is still much going on. Despite increasing cases of their application, legislations directly regulating TMS and tDCS are hard to find. Legal regulation regarding TMS and tDCS in the United States, Germany and Japan reveals that while TMS has been approved as a medical device with a moderate risk, tDCS has not yet earned approval as a medical device. However, the recent FDA guidance, European MDR changes, recalls in the US, and relevant legal provisions of Germany and Japan, as well as recommendations from expert groups all show signs of tDCS growing closer to getting approved as a medical device. Of course, safety and efficacy of tDCS can still be regulated as a general product instead of as a medical device. Considering multiple potential impacts on a human brain, however, the need for independent regulation is urgent. South Korea also lacks legal provisions explicitly regulating TMS and tDCS, but they fall into the category of the grade 3 medical devices according to the notifications of the Korean Ministry of Food and Drug Safety. And safety and efficacy of TMS are to be evaluated in compliance with the US FDA guidance. But no specific guidelines exist for tDCS yet. Given that tDCS devices are used in some hospitals in reality, and also at home by individual buyers, such a regulatory gap must quickly be addressed. In a longer term, legal system needs to be in place capable of independently regulating non-invasive brain stimulating devices.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)