Browse > Article
http://dx.doi.org/10.9714/psac.2019.21.1.010

Gain characteristics of SQUID-based RF amplifiers depending on device parameters  

Lee, Y.H. (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Yu, K.K. (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Kim, J.M. (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Lee, S.K. (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
Chong, Y. (Quantum Information Team, Korea Research Institute of Standards and Science)
Oh, S.J. (Center for Axion and Precision Physics Research, Institute for Basic Science)
Semertzidis, Y.K. (Center for Axion and Precision Physics Research, Institute for Basic Science)
Publication Information
Progress in Superconductivity and Cryogenics / v.21, no.1, 2019 , pp. 10-14 More about this Journal
Abstract
Radio-frequency (RF) amplifiers based on direct current (DC) superconducting quantum interference device (SQUID) have low-noise performance for precision physics experiments. Gain curves of SQUID RF amplifiers depend on several parameters of the SQUID and operation conditions. We are developing SQUID RF amplifiers for application to measure very weak RF signals from ultra-low-temperature high-magnetic-field microwave cavity in axion search experiments. In this study, we designed, fabricated and characterized SQUID RF amplifiers with different SQUID parameters, such as number of input coil turn, shunt resistance value of the junction and coupling capacitance in the input coil, and compared the results.
Keywords
SQUID; radio-frequency amplifier; resonance frequency; amplification gain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Zeng et al., "High intrinsic noise and absence of hysteresis in superconducting quantum interference devices with large Stewart-McCumber parameter", Appl. Phys. Lett., 103, 042601, 2013.   DOI
2 S. J. Asztalos et al., "Design and performance of the ADMX SQUID-based microwave receiver", Nucl. Instr. Meth. Phys. Res. A, 656, pp. 39-44, 2011.   DOI
3 S. Michotte, "Qubit dispersive readout scheme with a microstrip superconducting quantum interference device amplifier", Appl. Phys. Lett., 94, pp. 122512-1-3, 2009.   DOI
4 Y. H. Lee, K. K. Yu, J. M. Kim, S. K. Lee, Y. Chong, S. J. Oh, and Y. K. Semertzidis, "Correction of Resonance Frequency for RF amplifiers based on Superconducting Quantum Interference Device", Prog. Supercond. Cryog., 20, pp. 6-10, 2018.
5 J. Clarke, A. T. Lee, M. Muck and P. L. Richards, "SQUID Voltmeters and Amplifiers", p. 22-115, Chap. 8, in The SQUID Handbook, Eds. J. Clarke and A. I. Braginski, 2006, Wiley-VCH.
6 J. Clarke, M. Muck, M. Andre, J. Gain and C. Heiden, "The Microstrip DC SQUID Amplifier", p. 473-504, in Microwave Superconductivity, Eds. H. Weinstock and M. Nisenoff, 2001, Kluwer Academic Pub.
7 M. Muck, and J. Clarke, "The superconducting quantum interference device microstrip amplifier: Computer models", J. Appl. Phys., 88, pp. 6910-6918. 2000.   DOI
8 Y. H. Lee, Y. Chong and Y. K. Semertzidis, "Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device", Prog. Supercond. Cryog., 16, pp. 1-6, 2014.
9 D. Kinion and J. Clarke, "Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling", Appl. Phys. Lett., 92, 172503, 2008.   DOI
10 F. C. Wellstood, C. Urbina and J. Clarke, Hot-electron effects in metals", Phys. Rev. B, 49, pp. 5942-5956, 1994.   DOI
11 Y. H. Lee, J. M. Kim, K. Kim, H. Kwon, K. K. Yu, I. S. Kim and Y. K. Park, "64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers", Supercond. Sci. Technol., 19, pp. S284-S288, 2006.   DOI
12 Y. H. Lee et al., "Development of SQUID-based high-frequency quantum amplifiers", Annual Report, IBS (IBS-R017-D1-2016-a01), 2016.