• 제목/요약/키워드: Diodes

검색결과 2,247건 처리시간 0.026초

1차측 환류 다이오드를 제거한 ZVS Three-Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter without Primary Freewheeling Diodes)

  • 전용진;김용;배진용;이은영;최근수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.183-187
    • /
    • 2005
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage, the proposed ZVS Three-Level converter can be simplified by removing the two freewheeling diodes.

  • PDF

CoSi$_2$를 As의 확산원으로 형성한 매우 얇은 n+/p 접합의 전기적 특성 (Electrical Characteristics of Ultra-Shallow n+/p Junctions Formed by Using CoSi$_2$ as Diffusion Source of As)

  • 구본철;정연실;심현상;배규식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.242-245
    • /
    • 1997
  • Co single layer and Co/Ti used to form a CoSi$_2$ contact. We fabricated the n+/p diodes with this CoSi$_2$ contact as diffusion source of As. The diodes wish CoSi$_2$ formed by Co/ri bilayer had more Bo7d electrical characteristics than CoSi$_2$ formed by Co single layer. This shows that the flatness of interface which is a parameters to affect the diodes\` electrical characteristics. And the electrical characteristics of diodes are more good when the second thermal activation processing temperature was low as much as 50$0^{\circ}C$ than the temperature high over than 80$0^{\circ}C$, it was thought as that the silicide was degradated at high temperature.

  • PDF

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

4H-SiC MPS 다이오드의 P 영역 최적화에 관한 연구 (A Study on Optimization of the P-region of 4H-SiC MPS Diode)

  • 정세웅;김기환;김소망;박성준;구상모
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.181-183
    • /
    • 2016
  • 탄화규소(Silicon Carbide) 기반의 1200 V급 Merged Pin Schottky(MPS) 다이오드의 구조를 2D-atlas simulation tool을 사용하여 최적화 및 설계하였다. 최적화된 항복전압과 온-저항 값을 얻기 위해 본 소자에서 중요한 파라미터인 P-Grid의 도핑농도와 에피층의 도핑농도를 각각 $2{\sim}10{\times}10^{17}cm^{-3}$, $2{\sim}10{\times}10^{16}cm^{-3}$으로 변화시키면서 소자의 전기적 특성을 분석하였으며, 그 후 P-Grid의 Space값을 $1{\sim}5{\mu}m$로 설계하여 이에 따른 항복전압과 온-저항의 값을 확인하였다. 항복전압과 온-저항은 서로 trade-off 관계에 있기 때문에 각 변수에서 도출된 값들을 Baliga's Figure Of Merit (BFOM)식에 대입하여 비교하였다. 그 결과 고전압 소자에 적용 가능한 1200 V급 4H-SiC MPS다이오드를 최적화 및 설계를 도출하였다.

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF

4H-SiC JBS Diode의 전기적 특성 분석 (Electrical Characteristics of 4H-SiC Junction Barrier Schottky Diode)

  • 이영재;조슬기;서지호;민성지;안재인;오종민;구상모;이대석
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.367-371
    • /
    • 2018
  • 1,200 V class junction barrier schottky (JBS) diodes and schottky barrier diodes (SBD) were simultaneously fabricated on the same 4H-SiC wafer. The resulting diodes were characterized at temperatures from room temperature to 473 K and subsequently compared in terms of their respective I-V characteristics. The parameters deduced from the observed I-V measurements, including ideality factor and series resistance, indicate that, as the temperature increases, the threshold voltage decreases whereas the ideality factor and barrier height increase. As JBS diodes have both Schottky and PN junction structures, the proper depletion layer thickness, $R_{on}$, and electron mobility values must be determined in order to produce diodes with an effective barrier height. The comparison results showed that the JBS diodes exhibit a larger effective barrier height compared to the SBDs.

고온, 고전압 Ni/4H-SiC 및 Ni/6H-SiC Schottky 다이오드의 제작 및 전기적 특성 연구 (Fabrications and Characterization of High Temperature, High Voltage Ni/6H-SiC and Ni/4H-SiC Schottky Barrier Diodes)

  • 이호승;이상욱;신동혁;박현창;정웅
    • 전자공학회논문지D
    • /
    • 제35D권11호
    • /
    • pp.70-77
    • /
    • 1998
  • 본 논문에서는 nickel/silicon carbide(Ni/SiC) 접합에 의한 Schottky 다이오드를 제작하고, 그 전기적 특성을 조사하였다. Ni/4H-SiC의 경우, 산화막 모서리 단락을 하였을 때 상온에서 973V의 역방향 항복전압이 측정되었으며 이는 모서리 단락되지 않은 Schottky 다이오드의 역방향 항복전압 430V에 비해 매우 높았다. Ni/6H-SiC Schottky 다이오드의 경우, 산화막으로 모서리 단락시켰을 때와 시키지 않았을 때의 역방향 항복전압은 각각, 920V와 160V 였다. 고온에서의 소자 특성도 매우 좋아서 Ni/4H-SiC Schottky 다이오드와 Ni/6H-SiC Schottky 다이오드 모두 300℃까지 전류 특성의 변화가 거의 없었으며 550℃에서도 양호한 정류 특성을 보였다. 상온에서의 Schottky barrier height와 이상인자(ideality factor) 및 specific on-resistance는 Ni/4H-SiC의 경우는 1.55eV, 1.3, 3.6×10/sup -2/Ω·㎠이었으며 Ni/6H-SiC Schottky 다이오드의 경우에 1.24eV, 1.2, 2.6×10/sup -2Ω·㎠/로 나타났다. 실험 결과 Ni/4H-SiC 및 Ni/6H-SiC Schottky 다이오드 모두 고온, 고전압 소자로서 우수한 특성을 나타냄이 입증되었다.

  • PDF