Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.08.006

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime  

Song, Wook (School of Chemical Engineering, Sungkyunkwan University)
Kim, Taekyung (Display Research Center, Samsung Display Co.)
Lee, Jun Yeob (School of Chemical Engineering, Sungkyunkwan University)
Lee, Yoonkyoo (Display Research Center, Samsung Display Co.)
Jeong, Hyein (Display Research Center, Samsung Display Co.)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 350-354 More about this Journal
Abstract
Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.
Keywords
Degradation; Lifetime; Phosphorescent device; TADF; Blue device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.J. Cho, S.K. Jeon, J.Y. Lee, Adv. Opt. Mater. 4 (2016) 688.   DOI
2 J.M. Choi, W. Lee, K.K. Kim, J.Y. Lee, Org. Electron. 45 (2017) 104.   DOI
3 W. Song, J.Y. Lee, Adv. Opt. Mater. 5 (2017).
4 W. Song, W. Lee, K.K. Kim, J.Y. Lee, Org. Electron. 37 (2016) 252.   DOI
5 Y.J. Kang, J.Y. Lee, Org. Electron. 32 (2016) 109.   DOI
6 K. Udagawa, H. Sasabe, C. Cai, J. Kido, Adv. Mater. 26 (2014) 5062.   DOI
7 S.W. Wen, M.T. Lee, C.H. Chen, J. Disp. Technol. 1 (2005) 90.   DOI
8 S.J. Yeh, M.F. Wu, C.T. Chen, Y.H. Song, Y. Chi, M.H. Ho, S.F. Hsu, C.H. Chen, Adv. Mater. 17 (2005) 285.   DOI
9 W. Song, J.Y. Lee, Adv. Opt. Mater. 5 (2017) 12.
10 V. Sivasubramaniam, F. Brodkorb, S. Hanning, H.P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf, M. Kreyenschmidt, J. Fluorine Chem. 130 (2009) 640.   DOI
11 S. Scholz, D. Kondakov, B. Luessem, K. Leo, Chem. Rev. 115 (2015) 8449.   DOI
12 J.A. Seo, M.S. Gong, W. Song, J.Y. Lee, Chem. Asian J. 11 (2016) 868.   DOI
13 D.Y. Kondakov, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. (2015) 373.
14 B. Kim, Y. Park, J. Lee, J.H. Lee, J. Park, H.L. Wang, J. Mater. Chem. C (2014) 248.
15 Q.S. Zhang, B. Li, S.P. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon. 8 (2014) 326.   DOI
16 H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 5 (2014).
17 W. Song, T. Kim, Y. Lee, J.Y. Lee, J. Mater. Chem. C 5 (2017) 3948.
18 M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B 62 (2000) 10967.   DOI
19 N.C. Giebink, B.W. D'Andrade, M.S. Weaver, P.B. Mackenzie, J.J. Brown, M.E. Thompson, S.R. Forrest, J. Appl. Phys. (2008) 103.
20 Y.F. Zhang, J. Lee, S.R. Forrest, Nat. Commun. 5 (2014) 1.
21 J. Lee, H.F. Chen, T. Batagoda, C. Coburn, P.I. Djurovich, M.E. Thompson, S.R. Forrest, Nat. Mater. 15 (2016) 92.   DOI
22 J.A. Seo, S.K. Jeon, J.Y. Lee, Org. Electron. 34 (2016) 33.   DOI