• Title/Summary/Keyword: Diode Clamped 3-level Inverter

Search Result 11, Processing Time 0.026 seconds

Overvoltage Snubber for a Diode-Clamped 3-level IGBT Inverter (다이오드 클램프형 3-레벨 IGBT 인버터용 과전압 방지 스너버)

  • Jung, Jae-Hun;Song, Woong-Hyub;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won;Yoo, Dong-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.514-521
    • /
    • 2009
  • This paper deals with a new overvoltage snubber for a diode-clamped 3-level IGBT inverter. Usually most power converters use snubber circuits to protect the switching devices from voltage spike. However, it is difficult for the diode-clamped multi-level converter to be protected from voltage spike with overvoltage snubber since the series connection of the switching devices. To solve the problem the characteristic of a overvoltage snubber for a DC-DC converter is analyzed, and a new snubber for a diode clamped 3-level inverter is proposed. The performance of the proposed snubber is verified through experiments.

Partial O-state Clamping PWM Method for Three-Level NPC Inverter with a SiC Clamp Diode

  • Ku, Nam-Joon;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1066-1074
    • /
    • 2015
  • This paper presents the reverse recovery characteristic according to the change of switching states when Si diode and SiC diode are used as clamp diode and proposes a method to minimize the switching loss containing the reverse recovery loss in the neutral-point-clamped inverter at low modulation index. The previous papers introduce many multiple circuits replacing Si diode with SiC diode to reduce the switching loss. In the neutral-point-clamped inverter, the switching loss can be also reduced by replacing device in the clamp diode. However, the switching loss in IGBT is large and the reduced switching loss cannot be still neglected. It is expected that the reverse recovery effect can be infrequent and the switching loss can be considerably reduced by the proposed method. Therefore, it is also possible to operate the inverter at the higher frequency with the better system efficiency and reduce the volume, weight and cost of filters and heatsink. The effectiveness of the proposed method is verified by numerical analysis and experiment results.

Neutral Point Voltage Control for Grid-Connected Three-Phase Three-Level Photovoltaic Inverter (계통연계형 3상 3레벨 태양광 인버터의 중성점 전압제어)

  • Park, Woonho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 2015
  • Three-level diode clamped multilevel inverter, generally known as neutral point clamped (NPC) inverter, has an inherent problem causing neutral point (NP) potential variation. Until now, the NP potential problem of variation has been investigated and lots of solutions have also been proposed. This paper presents a neutral point voltage control technology using the anti-windup PI controller and offset technology of PWM (Pulse Width Modulation) to control the variation of NPC 3-phase three-level inverter neutral point voltage. And the proposed algorithm is tested and verified using a PLL (Phase Locked Loop) in order to synchronize the phase voltage from the line voltage of grid. It significantly improves the voltage balancing under a solar fluctuation conditions of the inverter. Experimental results show the good performance and effectiveness of the proposed method.

Study of Neutral Point Potential Variation for Three-Level NPC Inverter under Fault Condition (3레벨 NPC인버터 고장 시 중성점 전압변동에 관한 연구)

  • Park, Jong-Je;Kim, Tae-Jin;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.385-387
    • /
    • 2008
  • Three-level Diode Clamped Multilevel Inverter, generally known as Neutral-Point-Clamped(NPC) inverter, has an inherent problem causing Neutral Point(NP) potential variation. Until now, in many literatures NP potential problem has been investigated and lots of solutions have also been proposed. However, in the case of NP potential variation was rarely published from the standpoint of reliability. In this paper, NP potential is analytically investigated both normal and fault conditions under carrier based PWM. Subsequently, relation between fault detection time and size of capacitor is analyzed. This information is explored by simulation results, which contribute to enhance the reliability of the NPC inverter system.

  • PDF

Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters

  • Chokkalingam, Bharatiraja;Bhaskar, Mahajan Sagar;Padmanaban, Sanjeevikumar;Ramachandaramurthy, Vigna K.;Iqbal, Atif
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.702-713
    • /
    • 2019
  • Multilevel Inverters (MLIs) are widely used in medium voltage applications due to their various advantages. In addition, there are numerous types of MLIs for such applications. However, the diode-less 3-level (3L) T-type Neutral Point Clamped (NPC) MLI is the most advantageous due to its low conduction losses and high potential efficiency. The power circuit of a 3L T-type NPC is derived by the conventional two level inverter by a slight modification. In order to explore the MLI performance for various Pulse Width Modulation (PWM) schemes, this paper examines the operation of a 3L (five level line to line) T-type NPC MLI for various types of Multi-Carriers Pulse Width Modulation (MCPWM) schemes. These PWM schemes are compared in terms of their voltage profile, total harmonic distortion (THD) and conduction losses. In addition, a 3L T-type NPC MLI is also compared with the conventional NPC in terms of number of switches, clamping diodes, main diodes and capacitors. Moreover, the capacitor-balancing problem is also investigated using the Neutral Point Fluctuation (NPF) method with all of the MCPWM schemes. A 1kW 3L T-type NPC MLI is simulated in MATLAB/Simulink and implemented experimentally and its performance is tested with a 1HP induction motor. The results indicate that the 3L T-type NPC MLI has better performance than conventional NPC MLIs.

A Study on the Neutral Point Potential Variation under Open-Circuit Fault of Three-Level NPC Inverter (3레벨 NPC 인버터 개방성 고장 시 중성점 전압변동에 관한 연구)

  • Park, Jong-Je;Park, Byoung-Gun;Ha, Dong-Hyun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.333-342
    • /
    • 2009
  • Three-level Diode Clamped Multilevel Inverter, generally known as Neutral-Point-Clamped (NPC) Inverter, has an inherent problem causing Neutral Point (NP) potential variation. Until now, in many literatures NP potential problem has been investigated and lots of solutions have also been proposed. However, under fault and fault tolerant control, distinctive feature for NP potential variation problem was rarely published from the standpoint of reliability. In this paper, NP potential is analytically investigated both normal and faulty conditions under carrier based PWM. Subsequently, relation between fault detection time and size of capacitor is analyzed. This information is explored by simulation and experiment results, which contribute to enhance the reliability of inverter system.

The Analysis of Conduction and Switching Losses in Multi-Level Inverter System (멀티레벨 인버터 시스템의 전도손실과 스위칭손실 해석)

  • 金 兌 珍;姜 岱 旭;;玄 東 石
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • The multi-level inverter system is very promising in ac drives, when both reduced harmonic contents and high power are required. In case of multi-level inverter system, the loss of switch devices cannot be analyzed by conventional methods. The reason is that the loss of each the switch device is different from one another unlike 2-level. In this paper, a simple and accurate method of computing conduction and switching loss is proposed for multi-level inverter system. The validity of the proposed method is proven for 3-level and 4-revel diode clamped inverter system.

A SVPWM for the Small Fluctuation of Neutral Point Current in Three-level Inverter (중성점 전류 리플을 고려한 3-레벨 인버터의 공간 벡터 펄스폭 변조 기법)

  • 김래영;이요한;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.33-37
    • /
    • 1998
  • For the high power variable speed applications, the DCTLI(diode clamped three-level inverter) have been widely used. This paper describes the analysis of the neutral point current of the DCTLI and the improved space vector-based PWM strategy considering the switching frequency of power devices, that minimizes the fluctuation of the neutral point current in spite of high modulation index region and low power factor. It contributes to decrease the capacitance of dc-link capacitor bank and to increase the neutral point voltage controllable region. Especially, even if second (or even) order harmonic is induced in load current (at this situation, is was investigated that the general control method can not suppress the neutral point voltage variation), this PWM can provide effective control method to suppress the neutral point voltage variation. Various simulation results by means of Matlab/Simulation are presented to verify the proposed PWM.

  • PDF

Implementation of an FPGA-based Multi-Carrier PWM Techniques for Multilevel Inverter (FPGA기반 멀티레벨 인버터의 다중 반송신호 PWM 기법 구현)

  • Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Multi-level inverters have drawn much of attention in recent years because it can meet the demand of high power applications and good power quality associated with reduced harmonic distortion. As the number of voltage level increases, field programmable gate arrays (FPGAs) are suitable for the implementation of multi-level modulation algorithm. This paper proposes the implementation method for generating PWM pulses at the three phase diode clamped five-level inverter using FPGA. The strategy for communicating stably the data of three-phase reference voltages between the DSP and FPGA is suggested. The techniques for generating PWM signals based on a multi-carrier modulation method are carried out through the experiments with 32-bit DSP and Cyclone-III FPGA.

A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters (소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법)

  • In, Hyo-Chul;Kim, Seok-Min;Park, Seong-Soo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.