• Title/Summary/Keyword: Dimethyl Ether

Search Result 289, Processing Time 0.037 seconds

Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups (세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Byung Min;Kim, Ji-Hyun;Kim, Sung Soo;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

The Study of KOGAS DME Process in Small and Medium Sized Gas Field Containing $CO_2$ ($CO_2$가 함유된 중소규모 가스전을 위한 KOGAS DME Process 연구)

  • Mo, Yong-Gi;Cho, Won-Jun;Song, Taek-Yong;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.51-55
    • /
    • 2010
  • The global activities to reduce the $CO_2$ emission as a greenhouse gas have been various efforts. Under this circumstance, small and medium sized gas field containing $CO_2$ to develop as LNG is not economic feasibility. Particularly, for the separation of $CO_2$ in gas field, separation facilities should be installed to add. This is and increase in plant construction cost and separated $CO_2$ emission into the atmosphere is not the result of greenhouse gas reduction. When the uneconomic gas field apply the KOGAS DME process, the gas field containing $CO_2$ can be increase economic feasibility because of natural gas and $CO_2$ can be use to resource gas. The Tri-reformer produced syngas as H2 and CO in KOGAS DME process and the resource gases are natural gas, steam, oxygen and $CO_2$. The $CO_2$ is used as raw material gases from recover $CO_2$ in DME process. In this study, we investigated range of application of $CO_2$ in gas field.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Phytotoxic Effect of Herbicides on Upland Crops and Weeds (밭작물(作物) 및 잡초(雜草)에 대한 제초제(除草劑)의 약해(藥害) 약효(藥效))

  • Ryang, H.S.;Chun, J.C.;Yim, J.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1984
  • This study was conducted to select herbicides effective for upland crops and to investigate the cause of crop injury in peanut cultivated with mulching. Crop such as radish (Raphanus acanthiformis Moor.), Chinese cabbage (Brassica raps L.), soybean (Glycine max Merr.), Peanut (Archis hypogaea L.), and marsh mallow (Malva olitoria Nakai) were tolerant to napropamide [2-(${\alpha}$-naphthoxy)-N, N-diethylpropionamide], alachlor [2-chloro-2', 6'-diethyl-N-(methoxymethyl) acetanilide], trifluralin (${\alpha},{\alpha},{\alpha}$-trifluoro-2, 6-dinitro-N, N-dipropylp-toluidine) and nitrofen (2,4-dichlorophenyl-p-nitrophenylether). Napropamide, diphenamide (N, N-dimethyl-2, 2-diphenylacetamide) and alachlor were safe for red pepper (Capsicum annuum L.), eggplant (Solanum melongena L. and tomato (Lycopersicon esculentum Mill.), while trifluralin, nitrofen and chlonitrofen (2,4,6-trichlorophenyl-4-nitrophenyl ether) could be used for water melon (Citrullus battich Forsk.), carrot (Daucus carota L.) and lettuce (Lactuca scariola L.) without crop injury. Out of nine major weed species studied, Capsella bursa-pastoris Medicus was the most resistant species to the herbicides tested. Napropamide and alachlor could not control P. hydropiper, while P. oleracea and C. album were tolerant to diphenamide :and alachlor, respectively. Urea herbicides such as methabenzthiazuron [3-(2-benzothiazolyl)-1,3-dimethylurea], linuron [3-(3, 4-dichlorophenyl~l-methoxy-i-methyl urea], and isoproturon [3-(4-isopropylphenyl) -1, 1-dimethylurea]gave a great injury to the crops studied. The weeding effect was greater for broadleaf weeds than for grasses. Isoproturon and linuron provided good selectivity for marsh mallow and carrot, respectively. In peanut, the crop injury caused by Four herbicides studied was greater when cultivated with mulching than when cultivated without mulching. With dinitroaniline herbicides the crop injury decreased as the gaseous herbicide was removed out of mulching. Alachlor gave little phytotoxicity to peanut grown under mulching condition and nitralin [4-(methylsuphonyl)-2, 6-dinitro-N, N-dipropylaniline] showed less toxicity to the peanut than pendimenthalin (3,4-dimethyl-2, 6-dinitro-N-1-ethyl propylaniline) and trifluralin.

  • PDF

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Herbicidal Effect on Perennial Paddy Weed Sagittaria and Eleocharis (답(畓) 다년생잡초(多年生雜草) 올미 및 올방개에 대한 제초체(除草劑) 작용성(作用性)에 관한 연구(硏究))

  • Chang, Y.H.;Kusanagi, Tokuichi
    • Korean Journal of Weed Science
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 1982
  • Herbicidal effectivity on perennial paddy weeds such as Sagittaria pygmaea Miq. and Eleocharis kuroguwai Ohwi was evaluated. Herbicides used were butachlor [2-chloro-2, 6-dietyl-N(butoxymethyl)-acetanilide], benthiocarb [S-(4-chlorobenzy)-N, N-diethyl-thiocarbamate], molinate (S-ethyhexahyaro-l-Hazpine-carbothiate], SW-751, Chlormethoxynil (2.4-dichlorophenyl-3-methoxy-4-nitrophenyl-ether), CNP (2.4.6-trichlorophenyl-4-nitrophenylether),oxadiazon [2-tertbutyl-4-(2.4-dichloro-S-isopropoxyphenyl)-5-OXO-1.3.4-Oxadiazoline], dinuron [1-dimethyl-benthyl)-3-pheratrylurea], bentazon [3-isopropyl-IH-2.1.3-benzothiadiazine-(4)3H-one-2.2-dioxide], ACN (3-chloro-2-amino-l.4-naphthoquinone), MCPB [4-(2-methyl-4chlorophenoxy), butyric acid], 2.4-D (sodium 2.4-dichlorophenoxy acetic acid), MCP) sodium 2-methyl-4-chlorophenoxy acetic acid), SST-5, TH 63. Graszin D (Bentazon/2.4-D) and Graszin M (Bentazon/MCP) Herbicidal effectivity was divided into three types. Type I was the complete control both leaf and tuber, and SW-751 was belonged to this type. Type II was the partial control that exhibit complete control within certain period after herbicide application. After a certain period, however, the lateral bud have the germinability and grow normally, there after. Chloromethoxynil, CNP, ACN, and Oxadiazon were belonged to this group. Type III was no control at all. For E. kuroguwai, application of CNP, Chloromethoxnil, Oxadiazon and SW-751 gave good control in the early stage shile 2.4-D, MCP, bentazon and glaszin-D controlled well the intermediate stage application. Based on this results, E. kuroguwai can be controlled by herbicide application either in the early stage or in the intermediate stage.

  • PDF

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.

Studies on Controlling Mixed Annual and Perennial Weeds in Paddy Fields - On the Herbicidal Properties of Perfluidone - (수종(數種) 다년생잡초혼생답(多年生雜草混生沓)에 있어서 제초제(除草劑)에 의한 효과적(效果的)인 잡초방제(雜草防除) - Perfluidone의 작용특성구명(作用特性究明)을 중심(中心)으로 -)

  • Ryang, H.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.75-99
    • /
    • 1983
  • The herbicidal properties of perfluidone [1,1,1-trifluoro-N-2-methyl-4-(phenylsulponyl) phenyl methanesulfonamide] were investigated in pots and paddy fields. At the rate of 2.0kg prod./10a, perfluidone did not cause any injury to the 4 leaf stage (LS) rice seedlings. Although the crop injury increased with increasing the application rate, the injury caused by 16kg prod. perfluidone/10a gave rise to only 30% yield reduction. The crop injury was greatest when perfluidone was applied 2 days before transplanting and decreased as the application time delayed. Perfluidone showed greater crop injury to the 3 LS seedlings, at more than 7cm water depth, and at high temperature than to the 4 LS seedlings, at 3-5cm water depth, and at low temperature. Indica and indica ${\times}$ japonica rice varieties were generally more sensitive to perfluidone than japonica rice variety. Perfluidone effectively controlled most of annual weeds and such perennial weeds as Sagittaria pygmaea MIQ., Potamogeton distinctus A. BENN, Cyperus serotinus ROTTB, Scirpus maritimus L., Eleocharis kuroguwai OHWL, and Scirpus hotarui OHWL, whereas Sagittaria trifolia L. and Polygonum hydropiper SPACH. were tolerent to perfluidone. The weeding effect decreased with increasing the leaching amount of water and the overflowing of irrigated water within 24 hours after the herbicide application. When the application time was done later than 8 days after transplanting, the perennial weeds were shown at deeper soil layers, and the standing water was deeper than 7cm, the effect tended to decrease. However, there was no difference in the weeding effect between soil types. Downward movement of perfluidone in flooded soil ranged from 2 to 8cm deep. The movement increased with increasing the leaching amount of water and the application rate and at a sandy loam soil which possessed less adsorptive capacity. Residual effect of perfluidone was found at 35 to 80 days after application, which varied such factors as Soil types. Increase in the leaching amount of water resulted in decrease in the period of the residual effect. The period was shorter at non-sterilized soil than at sterilized soil. The 0.75kg ai perfluidone + 1.5kg ai SL-49 (1,3-dimethyl-6-(2,4-dichlor-benzoyl)-5-phenacyloxy-pyrazole)/ha and 1.5kg ai perfluidone + 1.05kg ai bifenox (2,4-dichlorophenyl-3-methoxy carbonyl-4-nitro phenyl ether)/ha showed less crop injury than 1.5kg ai/ha perfluidone alone. However, the weeding effect of the former was similar to that of the later.

  • PDF