• 제목/요약/키워드: Dimensional Tolerance

검색결과 171건 처리시간 0.028초

3D Body Scanning Data를 활용한 중년 남성용 슬림 핏(Slim-fit) 드레스 셔츠 바디스 패턴개발연구 (Bodice Pattern Development of the Slim-fit Dress Shirt for Middle-aged Males Using 3D Body Scanning Data)

  • 서추연
    • 한국의류학회지
    • /
    • 제40권1호
    • /
    • pp.171-187
    • /
    • 2016
  • The study performed a comparison analysis of market brand patterns for slim-fit dress shirts and analyzed the body surface development figure of men in their 40s using 3D body scan data and developed slim-fit dress shirt patterns suitable for middle-aged men. The sizes of slim-fit dress shirt patterns showed a slight difference depending on brand. The overlap map of slim-fit dress shirt patterns for brands demonstrates how difference of one-dimensional sizes reflect on two-dimensional patterns. This map provides useful information for pattern design and allows and easy recognition of pattern size differences. A try-on system evaluation through 3D-Simulation allows a grasp of the fitness of neckline and size tolerance of under the arms in front, the silhouette of side lines, and overall fitness in front that also allows analysis of the front/back balance of a shirt in side, the size tolerance proportion in front/back, and the fitness of the arm-hole line. Thus, we obtained try-on results that were equivalent to wearing actual clothing. According to the drafting size suggested in the developed final pattern, the total width was 'C/2+5.5cm', and the front was set at 1cm bigger in the size difference of the front and back. The width of the front neck and the back neck was set identically at 'C/12', while the width of the front neck was set to 'C/12+1.5cm'. For the armhole depth, we added 'C/4+2cm', and '0.5cm and 1.5cm' for the width of the front and back to anthropometry. The results of the try-on evaluation through 3D-Simulation indicated that the fitness of the final slim-fit dress shirt pattern was superior to available slim-fit dress shirt patterns on the market and evaluated as superior to the types for middle-aged men.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

광가입자용 $1.3\mu{m}$ SSC-FP-LD의 모드변환기 구조 설계 (Spot-size converter design of an $1.3\mu{m}$ SSC-FP-LD for optical subscriber network)

  • 심종인;진재현;어영선
    • 한국광학회지
    • /
    • 제11권6호
    • /
    • pp.411-417
    • /
    • 2000
  • SSC(Spot-size converter)가 집적된 1$1.3\mu{m}$ FP(Fabry-Perot)-LD(Laser Diode)에서 SSC 영역의 광도파로 구조가 단일모드광섬유와의 광결합 효율 및 정렬오차에 미치는 영향에 대해서 3차원 BPM(Beam Propagation Method)를 사용하여 알아보았다. 수지 taper의 경우 광결합효율을 향상하기 위해서는 taper 끝단에 충분한 길이의 직선도파로를 형성하는 것이 중요함을 알수 있었다. 또한 수평 taper 구조에서는 출사단 방향으로 도파로폭이 좁아지는 경우가 넓어지는 경우에 비해 유리하고, 수직 taper에 비해 완만한 도파로 경사가 필요함을 알 수있었다. 단일모드 광섬유와의 광결합 손실 및 정렬오차 허용도의 관점에서 좋은 특성을 주는 SSC 도파로 모양을 제시하였다.

  • PDF

휴대폰용 금속 프론트 케이스의 프레스 성형공정에서 프레임의 형상오차 저감을 위한 연결부 형상설계 (Connector Design in Press Forming Process to Prevent Frame Twisting of Metal Front Case for Mobile Phone)

  • 이인규;이찬주;손영기;이정민;김동환;김병민
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.104-109
    • /
    • 2011
  • The metal front case of a mobile phone is manufactured by press forming and welding of thin metal sheets. Twisting of the frame after the forming process is one of main obstacle for the assembly with reinforcement by welding. This study introduces a method preventing twisting of the metal front case frame in press forming. The spring-back after forming produces twisting of the frame, which leads to a low structural stiffness. To reduce twisting, connectors are required to reinforce the structural stiffness of the frame. In this study, the twisting profile is evaluated using a finite element(FE) analysis for various connector shapes. The actual connector shape is determined by minimization of the frame twisting within the tolerance of the FE-analysis. To verify the validity of the proposed blank shape, a forming experiment is performed and the twisting profile is measured using a 3D laser scanning method. The dimensional accuracy is found to be within the tolerance and in good agreement with the FE-analysis.

점용접되는 차체 부품의 공차 해석 기법 (A Tolerance Analysis Method for Spot-welded Deformable Auto Body Parts)

  • 소현철;김국생;임현준;지해성;박봉준;유인석
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.23-31
    • /
    • 2006
  • Tolerance analysis of auto body requires the consideration of its compliance because of potentially significant deformation during the spot-weld assembly process. In this paper, a relatively recent method for such analyses is briefly introduced as one can find in the literature. In this method, it is important to take into account of the covariance between the sources of variation as they are closely located, which is the case in most auto body assembly. However, it is often impossible to know such covariance, for example, when a new car is being developed. Therefore, a mechanics-based method is proposed in this paper to estimate the covariance among the sources of variation by finite element analyses and simple statistical computations. The proposed method is illustrated by applying it to a three-dimensional model of real front wheel housing.

The Physiological Role of CPR1 in Saccharomyces cerevisiae KNU5377 against Menadione Stress by Proteomics

  • Kim, Il-Sup;Yun, Hae-Sun;Kwak, Sun-Hye;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • 제45권4호
    • /
    • pp.326-332
    • /
    • 2007
  • In order to understand the functional role of CPRl in Saccharomyces cerevisiae KNU5377 with regard to its multi-tolerance characteristics against high temperatures, inorganic acids, and oxidative stress conditions, whole cellular proteins were analyzed via liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This procedure was followed by two-dimensional (2-D) gel electrophoresis. Under menadione stress conditions, the 23 upregulated proteins were clearly identified only in the wild- type strain of KNU5377. Among the proteins, Sodl1p Tsa1p, Ahp1, Cpr1p, Cpr3, Ssb2p, and Hsp12p were identified as components of antioxidant systems or protein-folding related systems. The CPR1 protein could not be completely detected in the $cpr1{\Delta}$ mutant of KNU5377 and the other upregulated proteins in the wild-type strain evidenced a clear correlation with the results of immunoblot analysis. Moreover, a reduction in growth patterns (about 50%) could be observed in the $cpr1{\Delta}$ mutant, as compared with that of the wild-type strain under mild MD stress conditions. These results indicate that the upregulation of CPR1 may contribute to tolerance against MD as an inducer of oxidative stress.

Industry 4.0 - A challenge for variation simulation tools for mechanical assemblies

  • Boorla, Srinivasa M.;Bjarklev, Kristian;Eifler, Tobias;Howard, Thomas J.;McMahon, Christopher A.
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.43-52
    • /
    • 2019
  • Variation Analysis (VA) is used to simulate final product variation, taking into consideration part manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from previous products and processes and allow the designer to apply this to the new product. A new challenge to this traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to changed mass production characteristics, are considered as major challenges. Opportunities including predicting residual stresses in the final product and linking them to product deterioration, calculating non-dimensional performances and extending simulations for process manufactured products, such as drugs, food products etc. are additional winning aspects for next generation VA tools.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

LTCC-M 기술을 이용한 내부실장 R, L, C 수동소자의 특징 및 LMR용 PAM개발 (Characteristics of Embedded R, L, C Fabricated by Using LTCC-M Technology and Development of a PAM for LMR thereby)

  • 김인태;박성대;강현규;공선식;박윤휘;문제도
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.13-18
    • /
    • 2000
  • 금속기판 위에 결합된 저온 소성 세라믹(low temperature co-fired ceramics on metal, LTCC- M)은 소성 후에 x-, y- 방향으로의 수축을 1% 이하로 억제할 수 있어 수동 소자를 내장하는데 매우 유리하며, 금속 기판 전체를 접지로 사용함으로써 노이즈를 감소시킬 수 있다. 본 고에서는 내부 실장 수동 소자별 특성차에 대하여 소개하고, 이러한 내부 실장 소자를 이용하여 실제로 제작된 PAM(power amplifier module)을 소개하였다. 내장된 수동 소자는 테스트 패턴 상에서 10~20%의 변화값을 보였으며 실제 모듈에 적용하여도 목표치에 부합하는 소자 구성이 가능하였다. 수동 소자가 내부에 실장됨으로써 신호 처리 시간을 감소시킬 수 있고, 납점의 감소로 공정을 단순화시킬 수 있을 뿐만 아니라 신뢰성 또한 증가시킬 수 있으므로 향후 RF모듈 외에 파워 및 고기능 소자 등 다양한 분야에 응용이 가능할 것이다.

  • PDF

정밀제조를 위한 기하공차에서의 윤곽공차 사용 (A Profile Tolerance Usage in GD&T for Precision Manufacturing)

  • 김경욱;장성호
    • 산업경영시스템학회지
    • /
    • 제40권2호
    • /
    • pp.145-149
    • /
    • 2017
  • One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don't have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.