Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U (Department of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Kim, Young-Hoon (Department of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Cho, In-Shick (Department of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Kang, Ja-Heon (Department of Ophthalmology, East-West Neo Medical Center, Kyung Hee University, College of Medicine) ;
  • Chun, Il-Byung (Animal Nutrition and Physiology, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kwang-Hyun (Department of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Oh, Se-Jong (Department of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University)
  • Published : 2009.02.28

Abstract

Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

Keywords

References

  1. De Dea Lindner J, Canchaya C, Zhang Z, Neviani E, Fitzgerald GF, van Sinderen D, Ventura M. Exploiting Bifidobacterium genomes:The molecular basic of stress response. Int. J. Food Microbiol. 120:13-24 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.06.016
  2. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47: 646-652 (2000) https://doi.org/10.1136/gut.47.5.646
  3. Tannock GW. Probiotic properties of lactic-acid bacteria: Plenty of scope for fundamental R&D. Trends Biotechnol. 15: 270-274 (1997) https://doi.org/10.1016/S0167-7799(97)01056-1
  4. Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K. Encapsulation of probiotic bacteria with alginatestarch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47-55 (2000) https://doi.org/10.1016/S0168-1605(00)00380-9
  5. Sanchez B, Champomier-Verges MC, Anglade P, Baraige F, de Los Reyes-Gavilan CG, Margolles A. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol. 187: 5799-5808 (2005) https://doi.org/10.1128/JB.187.16.5799-5808.2005
  6. Schmidt G, Zink R. Basic features of the stress response in three species of bifidobacteria: B. longum. B. adolescentis, and B. breve. Int. J. Food Microbiol. 55: 41-45 (2000) https://doi.org/10.1016/S0168-1605(00)00211-7
  7. Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P. Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by $[^{35}S]$ methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiol. Lett. 248:207-215 (2005) https://doi.org/10.1016/j.femsle.2005.05.032
  8. van De Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. Anton. -Leeuw. Int. J. G. 82: 187-216 (2002) https://doi.org/10.1023/A:1020631532202
  9. Ahn JB, Hwang HJ, Park J. Physiological responses of oxygen tolerant anaerobic Bifidobacterium longum under oxygen. J. Microbiol. Biotechn. 11: 443-451 (2001)
  10. Matsumoto M, Ohishi H, Benno Y. H-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93: 109-113 (2004) https://doi.org/10.1016/j.ijfoodmicro.2003.10.009
  11. Teraguchi S, Uehara M, Ogasa K, Misuoka T. Enumeration of bifidobacteria in dairy products. Jpn. J. Bacteriol. 33: 753-761 (1978) https://doi.org/10.3412/jsb.33.753
  12. Kim YH, Moon YI. Comparison of specific proteins of Shiga toxinproducing E. coli (STEC) adhesion by Lactobacillus acidophilus strains using two dimensional gel electrophoresis. Korean J. Food Sci. Anim. Resour. 26: 263-268 (2006)
  13. Prasad J, Mcjarrow P, Gopal P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001(DR20) in relation to viability after drying. Appl. Environ. Microb. 69: 917-925 (2003) https://doi.org/10.1128/AEM.69.2.917-925.2003
  14. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5S ribosomal RNA database. Nucleic Acids Res. 30: 176-178 (2002) https://doi.org/10.1093/nar/30.1.176
  15. Korepanov AP, Gongadze GM, Garber MB. General stress protein CTC from Bacillus subtilis specifically binds to ribosomal 5S RNA. Biochemistry-US 69: 607-611 (2004) https://doi.org/10.1023/B:BIRY.0000033733.60180.e3
  16. Ventura M, Zink R, Fitzgerald GF, van Sinderen D. Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in Bifidobacterial tracing. Appl. Environ. Microb. 71: 487-500 (2005) https://doi.org/10.1128/AEM.71.1.487-500.2005
  17. Schmidt G, Zink R. Basic features of the stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. Int. J. Food Microbiol. 55: 41-45 (2002) https://doi.org/10.1016/S0168-1605(00)00211-7
  18. Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J. Bacteriol. 188:8044-8053 (2006) https://doi.org/10.1128/JB.00824-06
  19. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Camemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 5: 1327-1333 (2004) https://doi.org/10.1002/elps.200305844
  20. Ventura M, Canchaya C, van Sinderen D, Fitzgerald GF, Zink R. Bifidobacterium lactis DSM 10140: Identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microb. 70: 3110-3121 (2004) https://doi.org/10.1128/AEM.70.5.3110-3121.2004
  21. Ventura M, Canchaya C, Zink R, Fitzgerald GF, van Sinderen D. Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: Genetic, transcriptional, and phylogenetic analyses. Appl. Environ. Microb. 70: 6197-6209 (2004) https://doi.org/10.1128/AEM.70.10.6197-6209.2004
  22. Ventura M, Canchaya C, Bernini V, Del Casale A, Dellagho F, Neviani E, Fitzgerald GF, van Sinderen D. Genetic characterization of the Bifidobacterium breve UCC 2003 hrcA locus. Appl. Environ. Microb. 71: 8998-9007 (2005) https://doi.org/10.1128/AEM.71.12.8998-9007.2005
  23. Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D. How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: Protein players and regulators. FEMS Microbiol. Rev. 30: 734-759 (2006) https://doi.org/10.1111/j.1574-6976.2006.00031.x