• Title/Summary/Keyword: Dimensional Gel Electrophoresis

Search Result 269, Processing Time 0.027 seconds

Loss of a Strain-Specific Protein by Bacterial Infection in Amoeba proteus (Amoeba proteus에 있어서 박테리아 감염에 의한 변이주 특이성 단백질의 손실)

  • Ahn, Tae-In;Park, Eui-Yul
    • The Korean Journal of Zoology
    • /
    • v.28 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • By two-dimensional gel electrophoresis loss of a cell-specific protein was detected in tD strain of Amoeba proteus that had been infected by symbiotic bacteria extracted from xD strain. In 50 days of experimental infection by induced phagocytosis the host amoeba lost the ability to synthesize the tD cell-specific protein even after removal of the infective bacteria and xD cell-specific protein by growing the amoebae at $27^\\circC$. By this time the host amoebae were obligately dependent on the bacteria. From these and other results (Lorch and Jeon, Science 221:549), it is clear that the incompatibility of the infected nuclei with the cytoplasm of the uninfected amoeba and the obligate dependence of the host on bacteria are due to the irreversible inactivation or the loss of the cell-specific gene by bacterial infection in this amoeba.

  • PDF

Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress (Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2003
  • In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

Light/Dark Responsiveness of Kinetin-Inducible Secondary Metabolites and Stress Proteins in Rice Leaf

  • Cho, Kyoung-Won;Kim, Dea-Wook;Jung, Young-Ho;Shibato, Junko;Tamogami, Shigeru;Yonekura, Masami;Jwa, Nam-Soo;Kubo, Akihiro;Agrawal, Ganesh Kumar;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.112-116
    • /
    • 2007
  • Kinetin(KN) is an inducer of rice(Oryza sativa L.) defense/stress responses, as evidenced by the induction of inducible secondary metabolite and defense/stress protein markers in leaf. We show a novel light-dependent effect of KN-triggered defense stress responses in rice leaf. Leaf segments treated with KN(100 ${\mu}M$) show hypersensitive-like necrotic lesion formation only under continuous light illumination. Potent accumulation of two phytoalexins, sakuranetin and momilactone A(MoA) by KN that peaks at 48 h after treatment under continuous light is completely suppressed by incubation under continuous dark. Using two-dimensional gel electrophoresis we identified KN-induced changes in ribulose-1, 5-bisphosphate carboxylase/oxygenase, energy- and pathogenesis-related proteins(OsPR class 5 and 10 members) by N-terminal amino acid sequencing and mass spectrometry. These changes were light-inducible and could not be observed in the dark(and control). Present results provide a new dimension(light modulation/regulation) to our finding that KN has a potential role in the rice plant self-defense mechanism.

  • PDF

Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress

  • Kim, Il-Sup;Yun, Hae-Sun;Jin, In-Gnyol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.207-217
    • /
    • 2007
  • The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.

Changing Proteins in Granulosa Cells during Follicular Development in Pig (돼지 난포 발달 시 과립막 세포에서 발현되는 단백질의 변화)

  • Chae, In-Soon;Jang, Dong-Min;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.183-187
    • /
    • 2009
  • This study analyzed change of proteins in granulosa cells during the porcine follicuar development by proteomics techniques. Granulosa cells of the follicles, of which the diameter is $2{\sim}4\;mm$ and $6{\sim}10\;mm$, were collected from ovary of slaughtered pig that each follicle of diameter $1{\sim}4\;mm$ and $6{\sim}10\;mm$. We extracted glanulosa cell proteins by M-PER Mammalian Protein Extraction Reagent. Proteins were refined by clean-up kit and quantified by Bradford method until total protein was $200{\mu}l$. Immobilized pH gradient(IPG) strip used 18 cm, $3{\sim}10\;NL$. SDS-PAGE used 10% acrylamide gel. After silver staining, Melanie 7 and naked eye test were used for spot analyzation. Increasing proteins in glanulosa cell of $6{\sim}10\;mm$ follicle were 7 spots. This spots were analyzed by MALDI-TOF MS and searched on NCBInr. In results, 7 spots were similar to zinc/ling finger protein 3 precursor (RING finger protein 203), angiomotin, heat shock 60 kDa protein 1 (chaperonin) isoform 1 (HSP60), similar to transducin-like enhancer protein 1 (TLE 1), SH3 and PX domains 2A (SH3PXD2A). Those proteins were related with transfer between cells. Increase of proteins has an effect on follicular development.

Protein Profiles in Response to Salt Stress in Seedling of Salt Tolerant Rice Mutants

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Lee, Young-Keun;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • Proteomic analysis was performed in order to identify proteomic changes by salt stress between the Japonica cv. Donganbyeo (WT) and two salt-tolerant (ST) mutant lines by using the SDS-PAGE and 2-DE. Two salt tolerant rice mutant lines, ST-87 and ST-301, were selected by in vitro mutagenesis with gamma-ray. Three-week-old seedlings were treated with 171 mM NaCl for 7 days. In the SDS-PAGE, three proteins with molecular weights of 27, 46 and 58 kDa were highly increased under salt treatment. Total proteins from shoots of both WT and ST-lines were separated by two-dimensional gel electrophoresis. In 2-DE, 201, 226, 217 and 213 protein spots were detected in the untreated-or treated-WT and untreated- or treated-ST-87, respectively. Of theses, 17 and 10 protein spots were up- and down-regulated under salt stress in the WT, respectively. While, 16 and 8 protein spots were up- and down-regulated under salt stress in the ST-87, respectively, compared with the untreated plants. High intensity or de novo synthesized proteins were analyzed by MALDI-TOF/MS analysis.

Characterization of gender-specific bovine serum

  • Kim, Ji-Hoe;Kim, Min-Soo;Nahm, Sang-Soep;Lee, Dong-Mok;Pokharel, Smritee;Choi, In-Ho
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • Animal cell cultures generally require a nutrient-rich medium supplemented with animal serum. Adult bovine serum contains a variety of nutrients including inorganic minerals, vitamins, salts, proteins and lipids as well as growth factors that promote animal cell growth. To evaluate the potential use of gender-specific bovine serum (GSBS) for cell culture, the biochemical properties of male serum (MS), female serum (FS) and castrated-male serum (CMS) were investigated. Overall, the chemical profile of GSBS was similar to that of bovine references except for glucose, creatine kinase, lactate dehydrogenase and potassium. FS showed elevated total protein and sodium concentrations compared to MS and CMS. Proteins present in MS, FS and CMS but absent in fetal bovine serum (FBS) were selected by two-dimensional gel electrophoresis and identified by peptide mass fingerprinting. Some of the identified proteins are known to be involved in immune responses and the others have unknown physiological roles. Moreover, it was found that some proteins such as alpha-2-macroglobulin appeared to be gender-specific with higher contents in FS. Insulin and testosterone was significantly higher in MS, and $17{\beta}$-estradiol and estrone were higher in FS, as compared to the other sera. Taken together, the results indicate that each GSBS has a different ratio of components. Differences in serum constituents may affect cell cultures in a different manner and could be beneficial, depending on the specific aim of cell cultures.

Identification of Proteomic Components Associated with Resistance to Fusarium Head Blight in Rye

  • Perlikowski, Dawid;Wisniewska, Halina;Goral, Tomasz;Ochodzki, Piotr;Majka, Maciej;Pawlowicz, Izabela;Belter, Jolanta;Kosmala, Arkadiusz
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of ${\alpha}-$ and ${\beta}-amylase$ activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of ${\alpha}-$ and ${\beta}-amylases$, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.

Elevated plasma α1-antichymotrypsin is a biomarker candidate for malaria patients

  • Young Yil, Bahk;Sang Bong, Lee;Jong Bo, Kim;Tong-Soo, Kim;Sung-Jong, Hong;Dong Min, Kim;Sungkeun, Lee
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.571-576
    • /
    • 2022
  • Advancements in the field of proteomics have provided opportunities to develop diagnostic and therapeutic strategies against various diseases. About half of the world's population remains at risk of malaria. Caused by protozoan parasites of the genus Plasmodium, malaria is one of the oldest and largest risk factors responsible for the global burden of infectious diseases with an estimated 3.2 billion persons at risk of infection. For epidemiological surveillance and appropriate treatment of individuals infected with Plasmodium spp., timely detection is critical. In this study, we used combinations of depletion of abundant plasma proteins, 2-dimensional gel electrophoresis (2-DE), image analysis, LC-MS/MS and western blot analysis on the plasma of healthy donors (100 individuals) and vivax and falciparum malaria patients (100 vivax malaria patients and 8 falciparum malaria patients). These analyses revealed that α1-antichymotrypsin (AACT) protein levels were elevated in vivax malaria patient plasma samples (mean fold-change ± standard error: 2.83 ± 0.11, based on band intensities), but not in plasma from patients with other mosquito-borne infectious diseases. The results of AACT immunoblot analyses showed that AACT protein was significantly elevated in vivax and falciparum malaria patient plasma samples (≥ 2-fold) compared to healthy control donor plasma samples, which has not been previously reported.

Differential Proteomic Analysis of Chinese fir Clone Leaf Response to Salicylic Acid

  • Yang, Mei;Lin, Sizu;Cao, Guangqiu
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.83-94
    • /
    • 2010
  • Chinese fir (Latin name: Cunninghaimia lanceolata) is one of the major commercial coniferous trees. Most of Chinese fir forests are managed in successive rotation sites, which lead productivity to decline. Autotoxicity is the important reason for soil degradation of Chinese fir plantation, especially, phenolic acids are considered as the major allelopathic toxins which induce autotoxicity in Chinese fir rotation stands. We performed here proteomic approach to investigate the response of proteins in Chinese fir leaves to salicylic acid. The tube plantlets of Chinese fir clone were treated with 120 mg/L salicylic acid for 1, 3 and 5th day. 2-DE, coupled with MALDI-TOF-TOF/MS, was used to separate and identify the responsive proteins. We found 12, 7, and 12 candidate protein spots that were up- or down-regulated by at least 2.5 fold after 1, 3, and 5th day of the stress, respectively. Of these protein spots, 16 spots were identified successfully. According to the putative physiological functions, these proteins were categorized into five classes (1) the proteins involved in protein stability and folding, including 26S proteome, Grp78, Hsp70, Hsp90 and PPIase; (2) the protein involved in photosynthesis and respiration, including OEC 33 kDa subunit, GAPDH; (3) the protein related to cell endurance to acid, F-ATPase; (4) the protein related to cytoskeleton, tubulin; (5) the protein related to protein translation: prolyl-tRNA synthetase. These results give new insights into autotoxic substance stress response in Chinese fir leaves and provide preliminary footprints for further studies on the molecular signal mechanisms induced by the stress.