DOI QR코드

DOI QR Code

Elevated plasma α1-antichymotrypsin is a biomarker candidate for malaria patients

  • Young Yil, Bahk (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Sang Bong, Lee (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Jong Bo, Kim (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Tong-Soo, Kim (Convergence Research Center for Insect Vectors, Incheon National University) ;
  • Sung-Jong, Hong (Convergence Research Center for Insect Vectors, Incheon National University) ;
  • Dong Min, Kim (Department of Internal Medicine, College of Medicine, Chosun University) ;
  • Sungkeun, Lee (Department of Pharmacology, Inha University School of Medicine)
  • Received : 2022.08.26
  • Accepted : 2022.09.25
  • Published : 2022.11.30

Abstract

Advancements in the field of proteomics have provided opportunities to develop diagnostic and therapeutic strategies against various diseases. About half of the world's population remains at risk of malaria. Caused by protozoan parasites of the genus Plasmodium, malaria is one of the oldest and largest risk factors responsible for the global burden of infectious diseases with an estimated 3.2 billion persons at risk of infection. For epidemiological surveillance and appropriate treatment of individuals infected with Plasmodium spp., timely detection is critical. In this study, we used combinations of depletion of abundant plasma proteins, 2-dimensional gel electrophoresis (2-DE), image analysis, LC-MS/MS and western blot analysis on the plasma of healthy donors (100 individuals) and vivax and falciparum malaria patients (100 vivax malaria patients and 8 falciparum malaria patients). These analyses revealed that α1-antichymotrypsin (AACT) protein levels were elevated in vivax malaria patient plasma samples (mean fold-change ± standard error: 2.83 ± 0.11, based on band intensities), but not in plasma from patients with other mosquito-borne infectious diseases. The results of AACT immunoblot analyses showed that AACT protein was significantly elevated in vivax and falciparum malaria patient plasma samples (≥ 2-fold) compared to healthy control donor plasma samples, which has not been previously reported.

Keywords

Acknowledgement

This study was supported by funding from the National Research Fund (NRF-020R1F1A1070882 and NRF-2022R1F1A1066481) in the Republic of Korea.

References

  1. Division of parasitic disease and malaria. The history of malaria, an ancient disease [Internet]; Atlanta: Centers for Disease Control and Prevention; Available from: https://www.cdc.gov/malaria/about/history/
  2. Malaria rapid diagnostic test performance: Results of WHO product testing of malaria RDTs: Round 8 (2016-2018). Geneva, WHO; 2018. https://apps.who.int/iris/bitstream/handle/10665/276190/9789241514965-eng.pdf?ua=1
  3. Noppadon T, Chatnapa D, Polrat W and Srivicha K (2009) Malaria diagnosis: a brief review. Korean J Parasitol 47, 93-102 https://doi.org/10.3347/kjp.2009.47.2.93
  4. Bahk YY, Lee HW, Na BK et al (2018) Epidemiological characteristics of re-emerging vivax malaria in the Republic of Korea (1993-2017). Korean J Parasitol 56, 531-543 https://doi.org/10.3347/kjp.2018.56.6.531
  5. Singh B and Daneshvar C (2013) Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 26, 165-184 https://doi.org/10.1128/CMR.00079-12
  6. Rubio JM, Buhigas M, Subirats M, Baquero M, Puente S and Benito A (2001) Limited level of accuracy provided by available rapid diagnosis tests for malaria enhances the need for PCR-based reference laboratories. J Clin Microbiol 39, 2736-2737 https://doi.org/10.1128/JCM.39.7.2736-2737.2001
  7. Malaria diagnosis new perspectives: Report of the joint WHO/USAID informal consultation. Geneva; WHO; 1999. https://apps.who.int/iris/handle/10665/66321
  8. Casalino E, Le Bras J, Chaussin F, Fichelle A and Bouvet E (2002) Predictive factors of malaria in travelers to areas where malaria is endemic. Arch Intern Med 162, 1625-1630 https://doi.org/10.1001/archinte.162.14.1625
  9. World malaria report 2016. Geneva: WHO; 2016. https://apps.who.int/iris/bitstream/handle/10665/252038/9789241511711-eng.pdf?sequence=1
  10. Oriero EC, Geertruyden JP V, Nwakanma DC, D'Alessandro U and Jacobs J (2015) Novel techniques and future directions in molecular diagnosis of malaria in resource-limited settings. Expert Rev Mol Diagn 15, 1419-1426 https://doi.org/10.1586/14737159.2015.1090878
  11. Aggarwal S, Peng WK and Srivastava S (2011) Multi-omics advancements towards Plasmodium vivax malaria diagnosis. Diagnostics 11, 2222
  12. Kong TF, Ye W, Peng WK et al (2015) Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci Rep 5, 11425
  13. Ray S, Patel SK, Venkatesh A et al (2017) Quantitative proteomics analysis of Plasmodium vivax induced alterations in human plasma during the acute and convalescent phases of infection. Sci Rep 7, 4400
  14. Aggarwal S, Peng WK and Srivastava S (2021) Multi-omics advancements towards Plasmodium vivax malaria diagnosis. Diagnostics 11, 2222
  15. McKenzies FE, Sirichaisinthop J, Miller RS, Gasser RA and Wongsrichanalai C (2003) Dependence of malaria detection and species diagnosis by microscopy on parasite density. Am J Trop Med Hyg 69, 372-376 https://doi.org/10.4269/ajtmh.2003.69.372
  16. Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A et al (2004) Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol 44, 1578-1583 https://doi.org/10.1016/j.jacc.2004.06.073
  17. Hershko AY and Naparstek Y (2006) Autoimmunity in the era of genomics and proteomics. Autoimmun Rev 5, 230-233 https://doi.org/10.1016/j.autrev.2005.07.003
  18. Kalsheker N and Margan SM (2002) Gene regulation of the serine proteinase inhibitors alpha1-antitrypsin and alpha1-antichymotrypsin. Biochem Soc Trans 30, 93-98 https://doi.org/10.1042/bst0300093
  19. Baker C, Belbin O, Kalsheker N and Morgan K (2007) SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci 12, 2821-2835 https://doi.org/10.2741/2275
  20. Abraham C, Selkoe D, Potter H, Price D and Cork L (1989) α1-Antichymotrypsin is present together with the β-protein in monkey brain amyloid deposits. Neuroscience 32, 715-720 https://doi.org/10.1016/0306-4522(89)90292-3
  21. Abraham CR (2001) Reactive astrocytes and α1-antichymotrypsin in Alzheimer's disease. Neurobiol Aging 22, 931-936 https://doi.org/10.1016/S0197-4580(01)00302-5
  22. Shen XN, Niu LD, Wang YJ et al (2019) Inflammatory markers in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90, 590-598 https://doi.org/10.1136/jnnp-2018-319148
  23. Abraham C, Selkoe D, Potter H, Price D and Cork L (1989) α1-Antichymotrypsin is present together with the β-protein in monkey brain amyloid deposits. Neuroscience 32, 715-720 https://doi.org/10.1016/0306-4522(89)90292-3
  24. Gopalan SM, Wilczynska KM, Konik BS, Bryan L and Kordula T (2006) Nuclear factor-1-X regulates astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes. J Biol Chem 281, 13126-13133 https://doi.org/10.1074/jbc.M601194200
  25. Pasternack JM, Abraham CR, Van Dyke BJ, Potter H and Younkin SG (1989) Astrocytes in Alzheimer's disease gray matter express alpha 1-antichymotrypsin mRNA. Am J Pathol 135, 827-834
  26. Miyake H, Hara S, Nomi M, Arakawa S, Kamidono S and Hara I (2001) Value of prostate specific antigen alpha1-antochymotrypsin complex for the detection of prostate cancer in patients with a PSA level of 4.1-10.0 ng/mL: comparison with PSA-related parameter. Int J Urol 8, 589-593 https://doi.org/10.1046/j.1442-2042.2001.00381.x
  27. Jin Y, Wang W, Wang Q et al (2022) Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int 22, 156
  28. Guerra CA, Howes RE, Patil AP et al (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4, e774
  29. Bell DR, Wilson DW and Martin LB (2005) False-positive results of a Plasmodium falciparum histidine-rich protein 2-detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. Am J Trop Med Hyg 73, 199-203 https://doi.org/10.4269/ajtmh.2005.73.199
  30. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A and Wernsdorfer WH (2007) A review of malaria diagnostic tools: microscopy and rapid diagnostic (RDT). Am J Trop Med Hyg 77, 119-127 https://doi.org/10.4269/ajtmh.2007.77.119
  31. Infectious Disease Portal [Internet]; Cheongju (KR): Korean Disease Control and Prevention Agency. Available from: http://www.kdca.go.kr/npt/
  32. Shin HI, Ku B, Kim YJ, Kim TY, Cho SH and Lee SE (2020) Diagnosis and molecular analysis on imported Plasmodium ovale curtisa and P. ovale wallikeri malaria cases from west and South Africa during 2013-2016. Korean J Parasitol 58, 61-65 https://doi.org/10.3347/kjp.2020.58.1.61
  33. Kain KC, Harrington MA, Tennyson S and Keystone JS (1998) Imported malaria: prospective analysis of problems in diagnosis and management. Clin Infect Dis 27, 142-149 https://doi.org/10.1086/514616
  34. Moody A (2002) Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15, 66-78 https://doi.org/10.1128/CMR.15.1.66-78.2002
  35. Malaria microscopy quality assurance manual, version 2. Geneva: World Health Organization 2016. https://apps.who.int/iris/handle/10665/204266
  36. Hendriksen ICE, Mtove G, Pedro AJ et al (2011) Evaluation of a PfHRP2 and a pLDH-based rapid diagnostic test for the diagnosis of severe malaria in 2 populations of African children. Clin Infect Dis 52, 1100-1107 https://doi.org/10.1093/cid/cir143
  37. Schindler T, Robaina T, Sax J et al (2019) Molecular monitoring of the diversity of human pathogenic malaria species in blood donations on Bioko Island, Equatorial Guinea. Malar J 18, 9
  38. Freimanis G, Sedegah M, Owusu-Ofori S, Kumar S and Allain JP (2013) Investigating the prevalence of transfusion transmission of Plasmodium within a hyperendemic blood donation system. Transfusion 53, 1429-1441 https://doi.org/10.1111/j.1537-2995.2012.03943.x
  39. Lee MJ, Na K, Jeong SK et al (2014) Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma. J Proteome Res 13, 4878-4888
  40. Kim SH, Lee MJ, Hwang HK et al (2019) Prognostic potential of the preoperative plasma complement factor B in resected pancreatic cancer: a pilot study. Cancer Biomark 24, 335-342 https://doi.org/10.3233/cbm-181847