• Title/Summary/Keyword: Dike effect

Search Result 51, Processing Time 0.042 seconds

The Effect of Dredged Soil Improvement on Soil Chemical Conditions and Plant Growth at the Slope of Saemangeum Sea Dike

  • Park, Chanwoo;Koo, Namin;Kwon, Jino;Lim, Joo-Hoon;Jeong, Yong-Ho;Kim, Jung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • This study was conducted to determine the changes in soil chemical properties and the growth of seedling according to the different dredged soil improving methods at slope of Saemangeum sea dike. Undersea dredged soil was improved by five different methods. Seedlings of Ulmus davidiana var. japonica, Chionanthus retusa, Celtis sinensis, and Pinus thunbergii were planted after 9 month of experience site installation, then soil pH, NaCl concentration in soil, soil organic matter (SOM), and survival rate and height of seedling was measured. Initial soil pH was highest in the control plot but it decreased to the similar level with other soil improving plots after 35 months. There were no differences in NaCl concentration between the control and soil improving plots, and it showed decreasing tendency during the study period. In the control plot, initial SOM was lowest among that of other plots during the study period. The survival rate of 36 months after planting of P. thunbergii was highest among the species. The gap of the tree growth of P. thunbergii between the control plot and the soil improving plots was small, however, other species showed relatively higher tree height in the soil improving plots than the control plots. Creation forest with P. thunbergii might be a cost effective afforestation in coastal reclaimed land since it rarely needs additional improvement of dredged soil.

Field Model Test of the Non-power Soil Cleaning System (무동력 토사제거시스템의 현장모형실험)

  • Park, Chan Keun;Lee, Young Hak;Hong, Seok Min;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.

Examination of Vertical 1D Sediment Resuspension and Diffusion Model Using Field Data Collected in the Saemangeum Area (새만금 해역에서 연직 1차원 퇴적물 확산모델 검증)

  • Lee, Guan-Hong;Lee, Hee-Jun
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • The sediment resuspension and diffusion model is an integral part of a sediment transport and morphologic change model. We examined a vertical one-dimensional sediment resuspension and diffusion model using field data collected at about 10-m depth off the Saemangeun $4^{th}$ dike. The field data include waves, currents and suspended sediment concentration near the bed for about a day in May, 2007. The suspended sediment concentration obtained from the 1D model overestimated the observation about two orders of magnitude with single grain size and multiple grain sizes. The incorporation of the bed armoring effect, which adjusts the amount of suspended sediment with the available bed sediment, improved the agreement between the model and observation within a factor of two.

Optimization of the Extraction Parameters of Gardenia (Gardenia jasminoides Ellis) Fruits for the Maximum Antioxidant Capacity

  • Yang, Bin;Liu, Xuan;Teng, Dike;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.867-871
    • /
    • 2009
  • Response surface methodology (RSM) was used for the optimization of antioxidant capacity in gardenia extracts. The antioxidant capacities of gardenia fruit extracts were investigated by ferric reducing ability (FRA) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity (RSA) assays. The optimum extraction parameters for the strongest antioxidant capacity were the ethanol concentration (EtOH) of 48.9%, extraction temperature of $72.9^{\circ}C$, and extraction time of 29.9 min. Analysis of variance (ANOVA) showed that the quadratics of EtOH and extraction temperature had highly significant effect on the antioxidant capacity (p<0.001). The antioxidant capacity was correlated with contents of bioactive components [crocin, geniposide, and total phenolic (TP) compounds] in gardenia extracts and mainly attributed to the content of the TP compounds.

Improvement of Concrete Durability under Deicier and Freez-Thaw Environment (제설제 및 동결융해 환경하에서 콘크리트의 내구성 증진 방안에 관한 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.523-526
    • /
    • 2005
  • In order to traffic safety during winter season, snowfall and cold area has been spread the deicing chemicals, and the spraying amount is increasing every year. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, the source of substantial cost penalties due to their corrosive action and acceleration to deterioration concrete structures. Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three methods such as increase in design strength upto 32MPa application of granulated blast furnace slag powder, and concrete sealer. Of these, the method of increase in design strength upto 32MPa showed better durability for deterioration by de-icer salt.

  • PDF

Water Quality Behavior by the Sluice Gate Operation of Freshwater Lake (배수갑문 방류시점 및 방류량에 따른 담수호의 수질변화)

  • 김선주;김성준;김필식;이창형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.91-101
    • /
    • 2003
  • Boryeong Seadike located at southwestern seashore of Korean peninsula completed in 1997. Sluice gate operation can be an important factor to maintain lake water quality and reduce retaining time of pollutants within lake. The lake water quality simulation model, WASPS was adopted and tested to find out proper gate operation timing and discharge amount. From the simulation of sluice gate operation, the results showed that the later the time of discharge for loosing 1 day successively to 6 days, the better the quality of water. Discharge amount showed relatively minor changes of water quality. This means that pollutants flowed into lake from watershed do not have enough time to mix up with deep water when the gate opened at early time. About 3 days delay of discharge caused the dilution effect to stabilize the lake water quality in case of Boryeong freshwater lake.

Durable of Concrete in Snowfall and Cold Regions (적설한랭지역에서 콘크리트의 내구성)

  • Lee, Byung-Duck;Cheong, Hai-Moon;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.221-224
    • /
    • 2005
  • In order to traffic safety during winter season, snowfall and cold area has been spread the deicing chemicals, and the spraying amount is increasing every year. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, the source of substantial cost penalties due to their corrosive action and acceleration to deterioration concrete structures. Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three methods such as increase in design strength upto 35MPa application of granulated blast furnace slag powder, and concrete sealer. Of these, the method of increase in design strength upto 35MPa showed better durability for deterioration by de-icer salt.

  • PDF

The verification of the application of grouting in the bottom protection work of sea dikes in the field (그라우팅을 통한 방조제 바닥보호공 차수공법 현장 적용성 검증)

  • Lee, So-Yeal;Choi, Sae-Kyung;Jeong, Il-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.29-39
    • /
    • 2010
  • By understanding the construction process of sea dikes and the current state of the thickness and speed of fluid in the bottom layer protection work of final closure gaps, a construction method applicable for the blocking of bottom layer work will be selected. The three construction methods selected will be tested in site through various methods, and the reinforcement of bottom layer protection and impervious effect will be verified. The verification results are as follows: 1) The overall riprap layer were 0.5~1.0m thicker than planned so that the grouting depth and grout input amount increased 2) The applied construction methods permeability of riprap layers were improved from $\alpha{\times}10^{-2}cm/s$ before the construction to $\alpha{\times}10^{-4}cm/s$ after construction. 3) The results of core extraction in order to grossly verify the hardening time and durability allowed the identification of grout injection effect. The amount of filling of the injection was difficult to judge because the slime in many areas made the reading of borehole photography difficult.

  • PDF

Impacts on Water Quality to an Artificial Lake Due to Sudden Disturbance of Sediments (급격한 저니토 교란이 인공 하구호 수질에 미치는 영향)

  • 서승원;김정훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 2003
  • This study aims to figure out water quality impacts due to sudden disturbances of sediments during dike construction in land reclamation for the northern part of the Siwhaho Lake where heavily deteriorated settlements from upstream loadings are outstanding. We exploit a 3-D water quality model CE-QUAL-ICM combined with a hydrodynamic model TIDE3D. Simulations are done accounting water-sediment interaction in a 4-$\sigma$ layers. Long-term simulation for 1-year shows that bottom layers around the disturbance location are only affected and marks very high concentration. Complete vertical mixing appears at least 5km apart to downward due to complex effects of geometry, bathymetry and river inflows. It should be addressed that existing condition of the Siwhaho Lake stands for high concentration of COD and TP in winter and spring due to relatively high incoming loadings, however the effect of sediment disturbances yields reverse phenomena, i.e., impacts of dike construction arise greatly in summer and fall. Refined grid system consisting of 150m${\times}$150m rectangular grid, which is doubled system compared to previous study (Suh et al.,2002), gives affordable results by reducing flux differences through a cell especially in front of gate.

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary (영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계)

  • Kim, Se Hee;Sin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.53-62
    • /
    • 2019
  • Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.