Optimization of the Extraction Parameters of Gardenia (Gardenia jasminoides Ellis) Fruits for the Maximum Antioxidant Capacity

  • Yang, Bin (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Liu, Xuan (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Teng, Dike (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Gao, Yanxiang (College of Food Science and Nutritional Engineering, China Agricultural University)
  • Published : 2009.08.31

Abstract

Response surface methodology (RSM) was used for the optimization of antioxidant capacity in gardenia extracts. The antioxidant capacities of gardenia fruit extracts were investigated by ferric reducing ability (FRA) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity (RSA) assays. The optimum extraction parameters for the strongest antioxidant capacity were the ethanol concentration (EtOH) of 48.9%, extraction temperature of $72.9^{\circ}C$, and extraction time of 29.9 min. Analysis of variance (ANOVA) showed that the quadratics of EtOH and extraction temperature had highly significant effect on the antioxidant capacity (p<0.001). The antioxidant capacity was correlated with contents of bioactive components [crocin, geniposide, and total phenolic (TP) compounds] in gardenia extracts and mainly attributed to the content of the TP compounds.

Keywords

References

  1. He ML, Cheng XW, Chen JK, Zhou TS. Simultaneous determination of five major biologically active ingredients in different parts of Gardenia jasminoides fruits by HPLC with diode-array detection. Chromatographia 64: 713-717 (2006) https://doi.org/10.1365/s10337-006-0099-0
  2. Carmona M, Zalacain A, S$\'{a}$nchez AM, Novella JL, Alonso GL. Crocetin esters, picrocrocin, and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J. Agr. Food Chem. 54: 973-979 (2006) https://doi.org/10.1021/jf052297w
  3. Ichi T, Higashimura Y, Katayama D, Koda T, Shimizu T. Analysis of crocetin derivatives from gardenia (Gardenia jasminoides Ellis) fruits. J. Jpn. Soc. Food Sci. Tech. 42: 776-783 (1995) https://doi.org/10.3136/nskkk.42.776
  4. Pfister S, Meyer P, Steck A, Pfander H. Isolation and structure elucidation of carotenoid glycosyl esters gardenia fruit (Gardenia jasminoides Ellis) and saffron (Crocus sativus line). J. Agr. Food Chem. 44: 2612-2615 (1996) https://doi.org/10.1021/jf950713e
  5. Edge R, McGarvey DJ, Truscott TG. New trends in photobiology: The carotenoids as antioxidants-A review. J. Photoch. Photobio. B. 41: 189-200 (1997) https://doi.org/10.1016/S1011-1344(97)00092-4
  6. Krinsky NI. The biological properties of carotenoids. Pure Appl. Chem. 66: 1003-1010 (1994) https://doi.org/10.1351/pac199466051003
  7. Hosokawa M, Okada T, Mikami N, Konishi I, Miyashita K. Biofunctions of marine carotenoids. Food Sci. Biotechnol. 18: 1-11 (2009)
  8. Palozza P, Krinsky NI. Antioxidant effects of carotenoids in vivo and in vitro: An overview. Method. Enzymol. 213: 403-420 (1992) https://doi.org/10.1016/0076-6879(92)13142-K
  9. Mortensen A, Skibsted LH. Importance of carotenoid structure in radical-scavenging reaction. J. Agr. Food Chem. 45: 2970-2977 (1997) https://doi.org/10.1021/jf970010s
  10. Van-Calsteren MR, Bissonnette MC, Cormier F, Dufresne C, Ichi T, LeBlanc JCY, Perreault D, Roewer I. Spectroscopic characterization of crocetin derivatives from Crocus sativus and Gardenia jasminoides. J. Agr. Food Chem. 45: 1055-1061 (1997) https://doi.org/10.1021/jf9603487
  11. Francis FJ. Lesser-known food colorants. Food Technol. -Chicago 41: 62-68 (1987)
  12. Francis FJ. Miscellaneous colorants. Chap. 7, pp. 242-272. In: Natural Food Colorants. Hendry GAF, Houghton JD (eds). Blackie, Glasgow, Scotland (1992)
  13. Rios JL, Recio MC, Giner RM, Manez S. An update review of saffron and its active constituents. Phytother. Res. 10: 189-193 (1996) https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C
  14. Pham TQ, Cormier F, Farnworth E, Tong VH, Van-Calsteren MR. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J. Agr. Food Chem. 48: 1455-1461 (2000) https://doi.org/10.1021/jf991263j
  15. Li HB, Wong CC, Chen KW, Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 41: 385-390 (2008) https://doi.org/10.1016/j.lwt.2007.03.011
  16. Shin SR, Hong JY, Yoon KY. Antioxidant properties and total phenolic contents of Cherry Elaeagnus (Elaeagnus multiflora Thunb.) leaf extracts. Food Sci. Biotechnol. 17: 608-612 (2008)
  17. Bas D, Boyaci IH. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78: 836-845 (2007) https://doi.org/10.1016/j.jfoodeng.2005.11.024
  18. Lee WC, Yusof S, Hamid NSA, Baharin BS. Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). J. Food Eng. 75: 473-479 (2006) https://doi.org/10.1016/j.jfoodeng.2005.04.062
  19. Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47-56 (2005) https://doi.org/10.1016/j.foodchem.2004.08.050
  20. Sujata V, Ravishankar GA, Venkataraman LV. Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin, and safranal for the determination of the quality of the spice using thinlayer chromatography, high-performance liquid chromatography, and gas chromatography. J. Chromatogr. 624: 497-520 (1992) https://doi.org/10.1016/0021-9673(92)85699-T
  21. Matth$\ddot{a}$us B. Antioxidant activity of extracts obtained from residues of differernt oilseeds. J. Agr. Food Chem. 50: 3444-3452 (2002) https://doi.org/10.1021/jf011440s
  22. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 299: 152-178 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  23. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  24. Von-Gadow A, Joubert E, Hansmann CF. Effect of extraction time and additional heating on the antioxidant activity of Rooibos tea (Aspalathus lieraris) extracts. J. Agr. Food Chem. 45: 1370-1374 (1997) https://doi.org/10.1021/jf960280v
  25. Xu X, Gao YX, Liu GM, Wang Q, Zhao J. Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippopha$\"{e}$ thamnoides L.) oil using response surface methodology. LWT-Food Sci. Technol. 41: 1223-1231 (2008) https://doi.org/10.1016/j.lwt.2007.08.002
  26. Vatai T, $\v{S}$erget M, Knez $\v{Z}$ Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 90: 246- 245 (2009) https://doi.org/10.1016/j.jfoodeng.2008.06.028
  27. Zhang S, Chen R, Wu H, Wang C. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure. J. Pharmaceut. Biomed. 41: 57-63 (2006) https://doi.org/10.1016/j.jpba.2005.10.043
  28. Du XW, Wills RBH, Stuart DL. Change in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage, and ethalolic extraction. Food Chem. 86: 155-159 (2004) https://doi.org/10.1016/j.foodchem.2003.11.003
  29. Chen Y, Zhang H, Tian X, Zhao C, Cai L, Liu Y, Jia L, Yin HX, Chen C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chem. 109: 484-492 (2008) https://doi.org/10.1016/j.foodchem.2007.09.080